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1. INTRODUCTION

Consider the following generic situation in algebraic topology:

Question 1.0.1. Let X and Y be topological spaces and f : X → Y a map.
What can be said about f?

The answer to the question posed in such generality is ‘nothing’, but plenty
of genuinely interesting and tractable questions emerge by restricting X or Y
to some class of spaces and imposing conditions on f . Some examples include

− For which pairs (n, k) does there exist a retraction RPn → RP k?

− What is the order of a given f : Sk → Y in πk(Y )?

− For which g is there a map Σg → Σ1 of positive degree?

and perhaps the most fundamental result in this direction would be to establish
whether a given map f : X → Y is non-trivial at all. One’s immediate instinct
may be to take a generalized homology theory E∗ and consider the induced map
E∗(f) : E∗(X) → E∗(Y ) on homology. If E∗(f) is a non-zero homomorphism,
then f is not null-homotopic and our question has been answered.

However, the converse is false – E∗(f) being the zero map does not imply that
f is null-homotopic. There may well exist other homology theories testifying
to the contrary. But a priori there is no guarantee that we can detect the fact
that f is not null-homotopic with any theory.

Question 1.0.2. Is there a generalised homology theory E∗ such that f : X → Y
is null-homotopic iff Ẽ∗(f) = 0?

This question is still too general to be tractable. Instead suppose that the
maps we would like to study are self-maps f : ΣdX → X for some d ≥ 0 where
ΣX denotes the reduced suspension of X. Such maps can be composed into

fk : Σkd
Σ(k−1)df−−−−−−→ Σ(k−1)d → · · · → ΣX

f−→ X.

We call f nilpotent if fk is null-homotopic for some k and we would like to know
whether there exists a homology theory detecting that.

Note that two important simplifications were made. We have removed the
space Y from consideration and we have transferred the question to the realm of
stable homotopy theory where experience suggests that problems become easier.
Under these hypotheses we obtain the following remarkable result:
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Theorem 1.0.3 (Classical formulation of the nilpotence theorem). There is a
generalised homology theory MU∗ such that a self-map f : ΣdX → X of a finite
CW-complex X is nilpotent iff some iterate of M̃U∗(f) is trivial.

The statement of the theorem says that a certain homology theory – a coarse
algebraic invariant that is supposed to be easily computable – contains a lot of
topological information. Namely, it can determine whether some suspension of
f is null-homotopic.

The nilpotence theorem was born as Ravenel’s nilpotence conjecture in the
early 1980s [1]. Together with Ravenel’s other conjectures appearing in his
seminal paper [2], it guided the direction of research in algebraic topology in
the 1980s. The nilpotence conjecture was proven in 1988 by Ethan S. Devinatz,
Michael J. Hopkins and Jefferey H. Smith [3]. In fact, they proved a few closely
related and slightly stronger results, one of which is known as the ring spectrum
form of the nilpotence theorem.

Theorem 1.0.4 (Nilpotence theorem, ring spectrum form). Let R be a ring
spectrum and let

h : π∗(R)→MU∗(R)

be the Hurewicz homomorphism. Then every element of kerh is nilpotent.

This essay presents a proof of the theorem. The exposition largely follows
the original proof but we deviate from it occasionally. In these instances, our
proofs are based on Ravenel’s account of the nilpotence theorem in his orange
book [4].

We do not strive to be concise – instead, we aim to provide a thorough and
well-motivated account of the proof. Whenever using more words allows us to
elucidate an argument, we try to do so. This applies both to giving the intuition
for the large-scale structure of the proof as well as to supplying technical details
whenever they aid understanding.

Having said that, it would be impossible to develop the entire machinery
of modern algebraic topology from scratch. We assume the reader is familiar
with the Serre and Adams spectral sequences and basic properties of the stable
homotopy category, but we recall their properties nonetheless.

The essay is organised as follows: Chapter 2 outlines the background material
and sets the stage. The majority of Chapter 3 is dedicated to proving the ring
spectrum form of the nilpotence theorem – the smash product and self-map
forms are deduced swiftly at the end. In Chapter 4 we give some applications
of the nilpotence theorem and discuss related questions.



2. BACKGROUND

In this chapter we introduce the relevant background material that will be
needed for the discussion of the nilpotence theorem and its consequences in
the rest of this essay. We begin by introducing the notation and conventions
adopted in this work. In Section 2.2 we state some basic properties of the stable
homotopy category hSp and recall definitions of key terms. In Sections 2.3 and
2.4 we focus on the James construction and Snaith’s splitting. Then we define
Thom spectra and introduce X(n) and Fk, both of which play crucial roles in
the proof. The chapter is concluded with a section about the Adams spectral
sequence.

2.1 Notation and conventions

This work presents a complicated piece of mathematics with a lot of notation
to be defined, used and abused. This section describes the general notation and
conventions adopted in this essay.

We mostly work in the topological category Top consisting of weak Hausdorff
compactly generated topological spaces and continuous functions. In particular,
a space means a weak Hausdorff compactly generated topological space and a
map means a continuous function. Maps labelled by ↪→ are injective and maps
labelled by � are surjective. By idX we denote the identity map on X and we
sometimes omit the subscript if X can be deduced from the context.

− N = {1, 2, 3, . . . } and N0 = {0, 1, 2, . . . }. A prime number p is fixed.

− Iff means if and only if.

− In Top, the symbol ' denotes a homotopy equivalence and ∼= denotes a
homeomorphism.

The same symbol ∼= is used to denote an isomorphism in any algebraic
category. Isomorphisms in the stable homotopy category hSp are called
equivalences and are denoted by '.

Every notational simplification is inherently accompanied by a decrease in the
level of precision. Nonetheless, we have adopted the following conventions to
aid legibility.

− Our spaces are often based, but we are rarely explicit about their base-
points. In particular, ΣX denotes the reduced suspension of a based space
and π∗(X) is π∗(X,x0) for an implicit basepoint x0 ∈ X.
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− In Top and hSp we use the same symbol for a map and any of its restric-
tions and maps on cofibres induced by those. In hSp we additionally use
the same symbol for any of (de)suspensions of the original map.

− We sometimes denote the spectrum and its p-localisation with the same
symbol.

2.1.1 A note on the exposition

In theory, a mathematical proof is a roughly linear sequence of implications.
Starting with a state S0, one aims to gradually transform the given hypotheses
into conclusions via a sequence of steps

S0
s1−→ S1

s2−→ S2
s3−→ . . .

sn−→ Sn.

The integer n tends to correlate with the depth and complexity of the argument.
When n is large and a mathematician is reading a proof for the first time, they
might be unable to understand why s1 brings us any closer to the goal. Their
mental representation of the proof could look like this:

S1
s1←− S0 Sn.

With that in mind, many authors of mathematical texts write the proofs as
follows. Assume Sn−1 is true. Then we can do sn and finish. So we only have
to show that Sn−1 is true. Now assume that Sn−2 is true instead. After applying
the reasoning sn−1 we can reach the state Sn−1. But we have previously shown
that we are done once we reach Sn−1. Hence the goal now is to show that Sn−2

is true. For this assume Sn−3...

One can quickly get lost in the jungle of things that are true, things one
wishes to be true and things assumed to be true at any given stage of the proof.
For this reason, it is my strong personal preference not to do that.

Instead, we have opted to explain the global structure of the proof before
delving into the details. Introducing significant intermediate goals Sa, Sb and
Sc prior to the beginning of the proof allows one to appreciate why s1 brings us
closer to Sa even if the path to Sn is still hazy.

While the exposition of the proof might be somewhat original, the content is
not. We mostly follow the original article by Devinatz-Hopkins-Smith [3], which
is, to the best of our knowledge, the only complete account of the proof in the
literature. The other invaluable reference is Ravenel’s sketch in his orange book
[4]. Most of this proof closely follows [3] with significantly fewer details, but dif-
fers from the original in a proof of an important algebraic lemma. At this stage
we adopt Ravenel’s geometric approach, because it successfully circumvents one
of the very technical parts of the original proof.

This essay has also been greatly influenced by Cary Malkiewich’s excellent in-
troduction to the stable homotopy category [5], Matthew Akhil’s insightful post
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on MathOverflow [6], Eric Petersen’s informal blog entries about the nilpotence
theorem [7] and the discussions I have had with Oscar.

2.2 Stable homotopy category

We mostly work with axiomatic properties of the stable homotopy category hSp
and not in some model category of spectra. Whenever a model is needed, we
resort to the sequential spectra. In this section we recall the basic properties of
hSp following [5] and introduce some terminology.

Consider the Quillen model structure on Top in which the weak equivalences
are the maps inducing isomorphisms on homotopy groups and fibrations are the
Serre fibrations. The class of fibrant objects of Top contains all spaces and the
cofibrant objects are the retracts of the CW complexes. Therefore we may form
the homotopy category hTop in which the objects are the CW complexes and
the morphisms are the homotopy classes of morphisms of Top.

Analogously one defines the homotopy category hTop∗ where Top∗ is the
category of based topological spaces and basepoint-preserving maps.

We now list a few properties of the stable homotopy category hSp for com-
pleteness and future use in this essay. The proofs of these properties are obtained
by choosing a model category of spectra (for example sequential spectra, the
category described by Adams [8], othogonal spectra, symmetric spectra etc.)
and verifying from there.

Fact 2.2.1. There is a stabilization functor Σ∞ : hTop∗ → hSp and it has a
right adjoint Ω∞ : hSp→ hTop∗.

Remark. It is a common practice in homotopy theory to denote both a based
space X and its suspension spectrum Σ∞X by X. The context usually prevents
ambiguities, but we prefer to be very explicit about the object we have in mind.
This is why we do not adopt this convention, except for the sphere spectrum
S = Σ∞S0 and its suspensions Sn = Σ∞Sn.

Fact 2.2.2. There are suspension and loopspace functors Σ,Ω : hSp → hSp
which are inverse equivalences. They agree with the usual reduced suspension
and based loopspace functors in hTop∗ in the sense that the diagrams

hTop∗ hTop∗

hSp hSp

Σ

Σ∞ Σ∞

Σ

and

hTop∗ hTop∗

hSp hSp

Ω

Ω∞ Ω∞

Ω

commute.

Fact 2.2.3. For any X,Y ∈ hSp, the set of morphisms [X,Y ] := HomhSp(X,Y )
has the structure of an abelian group. The category hSp contains finite products
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X×Y , coproducts X∨Y and the zero object ∗. There are natural isomorphisms

X ∨ ∗ → X

X → X × ∗
X ∨ Y → X × Y

induced by the unique maps ∗ → X → ∗ making hSp into an additive category.
Moreover, hSp is equipped with a tensor product given by the smash product

of spectra X∧Y whose unit is S. There are natural isomorphisms X∧Y ∼= Y ∧X,
X ∧ (Y ∧ Z) ∼= (X ∧ Y ) ∧ Z and the smash product additionally satisfies the
triangle, pentagon and hexagon identities. This makes hSp into a symmetric
monoidal category.

Fact 2.2.4. In hSp a sequence of morphisms is a homotopy fibre sequence iff
it is a homotopy cofibre sequence.

Definition 2.2.5. Let E ∈ hSp be a spectrum.

− A spectrum X is E-acyclic if E ∧X ' 0.

− A morphism f : X → Y of spectra is an E-equivalence if

idE ∧f : E ∧X → E ∧ Y

is an equivalence.

Spectra represent generalized homology and cohomology theories via Brown’s
representability theorem. From this perspective f is an E-equivalence if the in-
duced map on homology

E∗(f) : E∗(X)→ E∗(Y )

is an isomorphism.

Definition 2.2.6. Let E ∈ hSp be a spectrum. A spectrum X is a E-local if
for every E-equivalence f : Y → Z the map [f,X]∗ : [Z,X]∗ → [Y,X]∗ is an
isomorphism for all ∗.

Definition 2.2.7. Let E,X ∈ hSp. Then an E-localization of X is an E-
equivalence X → LEX where LEX is some E-local spectrum.

Fact 2.2.8. For any E,X ∈ hSp an E-localisation of X exists.

The process of passing from a spectrum to an E-local spectrum is called the
Bousfield localization of spectra. Categorically this is a localization of hSp at
the collection E-equivalences.

In this essay we localize only at the Moore spectrum SZ(p) of Z(p). In this
case we also write X(p) := LSZ(p)

X and refer to it as the p-localization of X.
For any spectrum E we now have E∗(X(p)) = E∗(X)⊗ Z(p) and it follows that
X is contractible iff X(p) is contractible for every prime p.
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Definition 2.2.9. A spectrum X is contractible if π∗(X) = 0.

Definition 2.2.10. Let N ∈ Z. A spectrum X is

− N -connected if πd(X) = 0 for all d ≤ N ,

− connective if it is N -connected for some N .

Remark. Some authors define connective to mean (−1)-connected and there is
no widespread agreement about which definition to use.

Definition 2.2.11. A ring spectrum is a ring object (R, η,m) in hSp.

Here η : S → R is a unit and m : R ∧ R → R is a multiplication map. The
triple (R, η,m) will usually be shortened to just R.

Definition 2.2.12. Let R be a ring spectrum and α ∈ πd(R). There is an
induced map

ΣdR ' Sd ∧R α∧id−−−→ R ∧R m−→ R

which we also denote by α. Then the telescope α−1R is the homotopy colimit
of

R
α−→ Σ−dR

α−→ Σ−2dR→ · · · .

Remark. By a homotopy colimit we mean the following: the diagram above can
be lifted to a sequence of cofibrations between cofibrant objects in some model
category of spectra. The image in hSp of the categorical colimit of this lift is
independent of the lift and called the homotopy colimit of the diagram. Despite
the name, the homotopy colimit is not the categorical colimit in hSp.

Remark. Smash product commutes with homotopy colimits. Taking homotopy
groups commutes with filtered homotopy colimits. Therefore both of these con-
structions commute with taking the telescopes.

Definition 2.2.13. Spectra E,F ∈ hSp are Bousfield equivalent if for every
spectrum X we have that E ∧X ' ∗ iff F ∧X ' ∗.

The Bousfield equivalence class of E is denoted by 〈E〉. We write 〈E〉 ≥ 〈F 〉 if
for each spectrum X we have that E ∧X ' ∗ implies F ∧X ' ∗. We further
define 〈E〉 ∧ 〈F 〉 = 〈E ∧ F 〉 and 〈E〉 ∨ 〈F 〉 = 〈E ∨ F 〉.

Definition 2.2.14. A spectrum X ∈ hSp is of finite type if πd(X) is finitely
generated for each d. It is finite if it is equivalent to Σ−NΣ∞Y for some N ∈ N0

and some finite based CW complex Y .

We now briefly discuss the Spanier-Whitehead duality. The geometric idea
is that a space X can be considered as dual to its complement in SN for a large
N . This is formalized in the language of spectra with the following theorem.

Theorem 2.2.15 (Spanier-Whitehead Duality). For any finite spectrum X,
there is a finite spectrum DX such that
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− for any spectrum Y , there is an isomorphism of graded abelian groups
[X,Y ]∗ → π∗(DX ∧ Y ) that is natural in both X and Y .

The maps Sn ∧ X → Y and Sn → DX ∧ Y corresponding under this
isomorphism are called adjoint.

− D(X ∧ Y ) = DX ∧DY .

− DDX ' X and [X,Y ]∗
∼= [DY,DX]∗.

− X 7→ DX is a contravariant functor.

In this essay we mostly use the duality to replace maps ΣnX → Y with
maps with domain Sn and thus simplify the setting while retaining all essential
information.

2.3 James construction

In this section, we define the James construction and the James-Hopf maps.
The James construction lets us understand the homotopy type of the spaces
ΩΣX geometrically and plays an important role in algebraic topology beyond
this proof.

The James construction JX is a free topological monoid on a based space
(X, ∗). Formally, we have the following definition.

Definition 2.3.1. Let (X, ∗) be a based space. The James construction is the
space JX =

⊔∞
j=0X

j/ ∼ where ∼ is the equivalence relation generated by

(x1, . . . , xi−1, ∗, xi, . . . , xj) ∼ (x1, . . . , xi, xi+1, . . . , xj)

for each i and j.
The k-th stage of the James construction onX is the space JkX =

⊔k
j=0X

j/ ∼
where ∼ is the restriction of the above equivalence relation.

The space JX is a monoid in which multiplication is given by the concate-
nation of words and whose identity is the basepoint ∗. The k-th stage of the
James construction JkX is a subspace containing all words of length at most k.
The importance of the James construction stems from the following result.

Theorem 2.3.2. If X is a connected CW complex, then

− JX ' ΩΣX and

− ΣJkX '
∨k
j=0 ΣX∧j and ΣJX '

∨∞
j=0 ΣX∧j.

Here and elsewhere in the essay, an expression of the form (·)∧j refers to the
j-fold smash product of spaces, maps or spectra.

The spaces JkX form a filtration of the space X. We have JkX/Jk−1X '
X∧k as is easily seen from the definition of the equivalence relation ∼.
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In this essay, the Theorem 2.3.2 is used primarily in the case X = S2m for
studying the space ΩS2m+1. The homology of this loop space can be obtained
by a standard calculation with the Serre spectral sequence, but this argument
sheds no light on the geometric structure of ΩS2m+1. The James construction
equips its homotopy type with the structure of a CW complex with one cell in
each dimension divisible by 2m.

The James-Hopf maps generalize the Hopf invariant.

Definition 2.3.3. Let k ∈ N. Consider the James splitting map composed with
the projection

ΣJX
'−→ Σ

∞∨
j=0

X∧j → ΣX∧k.

The functors Σ and Ω are an adjoint pair and we define the adjoint map

JX → ΩΣX∧k

to be the James-Hopf map.

Fixing the coefficients in a field F , the Künneth theorem yields an iso-
morphism H∗(Y × Y ;F ) ∼= H∗(Y ;F ) ⊗ H∗(Y ;F ) and thus equips homology
H∗(Y ;F ) of any space Y with the coalgebra structure induced by the diagonal
map Y → Y ×Y . Then H∗(ΩΣX;F )→ H∗(ΩΣX∧k;F ) becomes a map of coal-
gebras. When X is a sphere, this map can be explicitly calculated in terms of
the generators [9, see Lecture 4, §3]. We shall need to know is that if X = S2m

and F = Fp, the map is surjective.

2.4 Snaith’s splitting

Snaith’s result translates the Theorem 2.3.2 to the stable homotopy category.

Theorem 2.4.1 (Snaith’s splitting). Let n ∈ N. For any based CW complex X
there is a splitting

Σ∞ΩnΣnX '
∞∨
k=0

Dk

where Dk are some finite spectra.

The James construction JX can be thought of as the (unstable!) case n = 1.
There are also concrete models for the homotopy types of spaces ΩnΣnX for
n ≥ 2 using the theory of operads, but this is not discussed further in this essay.

2.5 Thom spectra

The nilpotence theorem is a statement about MU detecting nilpotence. The
spectrum MU is the spectrum associated to the generalized cohomology theory
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complex cobordism via Brown’s representability theorem. In this section we
provide an alternative construction of MU , define other Thom spectra featuring
in the essay and establish some of their properties.

Let p : E → X be a complex vector bundle with an inner product 〈·, ·〉.
Recall that any vector bundle over a paracompact Hausdorff space admits an
inner product and all spaces we consider have these properties. Define the disc
bundle

DX(E) = {e ∈ E | 〈e, e〉 ≤ 1}

and the sphere bundle

SX(E) = {e ∈ E | 〈e, e〉 = 1}.

The Thom space of E is

ThX(E) = DX(E)/SX(E).

One can also consider a slightly more general construction. For a pair of spaces
(X,A) define the relative Thom space of E as the cofibre

ThX/A(E) = DX(E)/(SX(E) ∪DA(E)).

We can also Thomify maps.

Definition 2.5.1. Let f : Y → X be a map of spaces. It defines a pullback
bundle f∗E over Y and we have the commutative diagram

f∗E E

Y X.

p

f

The induced map Th(f) : ThY (f∗E)→ ThX(E) is the Thomification of f .

What we are really interested in is the notion of the Thom spectrum - the
stable analogue of the Thom space. We shall define the Thom spectrum of a
map f as a sequence of Thom spaces and structure maps associated to certain
bundles related to f . Let us introduce these bundles.

Let G be a topological group. A classifying space BG is a space with the
property that for any CW complex Y there is a bijection

[Y,BG] {principal G-bundles over Y }

between the set of homotopy classes of maps Y → BG and the set of isomor-
phism classes of principal G-bundles over Y .

The question of existence of BG can profitably be rephrased as the question
whether the functor hTop→ Set given by Y 7→ {principal G-bundles over Y }
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is representable. This follows from the Brown’s representability theorem. The
space BG is unique in hTop by the Yoneda lemma so by CW approximation
BG is unique in Top up to a weak homotopy equivalence.

To define Thom spectra consider the classifying space of the unitary group
U(k), in which case the abstract machinery can be replaced by an explicit model.
We have that BU(k) = Grk(C∞) is the infinite Grassmannian.

Theorem 2.5.2. Let γk(C∞) → Grk(C∞) be the tautological k-dimensional
complex vector bundle. For any CW complex Y there is a bijection

[Y,Grk(C∞)]→ {k-dimensional complex vector bundles over Y }
f 7→ f∗γk(C∞).

Hence BU(k) = Grk(C∞).

With the existence of γk(C∞) we can finally define Thom spectra. We first
give a convenient models for the spaces BU and BU(k). Let BU be the infinite
mapping telescope of

Gr1(C∞) ↪→ Gr2(C∞) ↪→ · · ·

where the inclusions are induced by the maps Grk(Cm)→ Grk+1(Cm+1) given
by V 7→ span{V, em+1} for em+1 /∈ Cm. Similarly let BU (k) denote the finite
mapping telescope of

Gr1(C∞) ↪→ Gr2(C∞) ↪→ · · · ↪→ Grk(C∞)

which is homotopy equivalent to BU(k) = Grk(C∞) by collapsing the telescope
to its right-hand end. Pulling back γk(C∞) along this map gives a bundle Vk
and by restricting further along the inclusion BU (k−1) ↪→ BU (k) we obtain a
commutative cube

Vk−1 ⊕ C Vk

γk−1(C∞)⊕ C γk(C∞)

BU (k−1) BU (k)

Grk−1(C∞) Grk(C∞).

' '

' '

To see that the restrictions of γk(C∞) and of Vk are indeed as in the diagram,
these pullbacks can be computed manually. For example, the pullback of γk(C∞)
is given by

{(V, x, U) ∈ Grk−1(C∞)× γk(C∞) | span{V, em+1} = U where U ≤ Cm}.



2. Background 14

Note that x ∈ U can be uniquely expressed as x = x′ + x′′ where x′ ∈ V and
x′′ ∈ span{em+1}. Thence the bundle is isomorphic to

{(V, x′, x′′) ∈ γk−1(C∞)× span{em+1}} ∼= γk−1(C∞)⊕ C

as required.

Let f : Y → BU be a map. For any k ∈ N we define the preimages
Y (k) := f−1(BU (k)). Restricting f to these subspaces yields maps into BU (k)

and the pullback square can be extended to

f∗(Vk) Vk γk(C∞)

Y (k) BU (k) Grk(C∞).
f

Restricting to Grk−1(C∞) extends the commutative cube above to the commu-
tative cuboid with f∗(Vk) ∼= f∗(Vk−1)⊕ C.

Definition 2.5.3. The Thom spectrum of the map f : Y → BU is denoted by
Y f and has spaces

Y f2k = ThY (k)(f∗(Vk))

Y f2k+1 = ΣY f2k

and the structure maps ΣY f2k
id−→ Y f2k+1 and

ΣY f2k+1 = Σ2Y f2k = Σ2 ThY (k)(f∗(Vk))
∼=−→ ThY (k+1)(f∗(Vk+1)) = Y f2k+2.

This construction carries over to the relative version for the pair of spaces.
Note that any complex vector bundle is orientable as a real vector bundle. The
main tool for calculation of homology groups of Thom spectra is the Thom
isomorphism theorem.

Theorem 2.5.4 (Thom isomorphism theorem). Let p : E → X be a complex
vector bundle of complex rank k. There is a Thom class u ∈ H2k(X;Z) such
that taking the cap product with u

H̃i+2k(ThX(E);Z)→ Hi(X;Z)

is an isomorphism.

Consider the category TopBU of spaces over BU whose objects are maps

Y
f−→ BU and whose morphisms are commutative diagrams

Y Y ′

BU

f

f ′
.
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Taking the Thom spectrum is a functor from the category TopBU to the cat-
egory hSp. In this language, the Thom isomorphism theorem together with
passing to the direct limits shows that the induced map on integral homology
in TopBU and hSp is the same.

In the rest of this section on Thom spectra we turn away from the general
theory and instead focus on increasingly specific objects. We introduce the main
characters MU , X(n), Fk, Gj of the story that unfolds in Chapter 3.

Definition 2.5.5. The spectrum MU is the Thom spectrum associated to the

identity map BU
id−→ BU .

Definition 2.5.6. The spectrum X(n) is the Thom spectrum associated to the
composite map ΩSU(n) ↪→ ΩSU ' BU where the second map is a homotopy
equivalence by the Bott periodicity theorem.

Lemma 2.5.7. X(n) and MU are commutative ring spectra with H∗(X(n);Z) ∼=
Z[x1, . . . , xn−1] and H∗(MU ;Z) ∼= Z[x1, x2, . . . ] where xi is a generator of de-
gree 2i.

Proof. For any space X, the loop space ΩX is an H-space. This means that
there is a map µ : ΩX × ΩX → ΩX given by concatenation of loops. It is
associative up to homotopy and the constant loop is its identity. By using the
cross product this defines a strictly associative unital map

H∗(ΩX;Z)⊗H∗(ΩX;Z)
×−→ H∗(ΩX × ΩX;Z)

µ∗−→ H∗(ΩX;Z)

on homology. This multiplication equips H∗(ΩX;Z) with the ring structure.
Whenever X itself is a topological group, this product is commutative. Passing
to hSp using the Thom isomorphism theorem we see that µ makes X(n) and
MU into commutative ring spectra with H∗(X(n);Z) ∼= H∗(ΩSU(n);Z) and
H∗(MU ;Z) ∼= H∗(ΩSU ;Z).

The structure of the homology ring H∗(ΩSU(n);Z) ∼= Z[x1, . . . , xn−1] is ob-
tained by studying the homological Serre spectral sequence for the path fibration
ΩSU(n) → P∗SU(n) → SU(n) in which the homology of SU(n) is well-known
(or can be obtained using yet another Serre spectral sequence argument). The
corresponding result for H∗(ΩSU ;Z) follows by passing to the evident direct
limit.

The following lemma is now immediate.

Lemma 2.5.8. X(n)→MU is (2n− 1)-connected for any n ∈ N.

Proof. Consider the map ΩSU(n) ↪→ ΩSU ' BU in TopBU . On integral
homology this is the inclusion

H∗(ΩSU(n);Z) ∼= Z [x1, . . . , xn−1] ↪→ Z [x1, x2, . . . ] ∼= H∗(BU ;Z)

and by the Thom isomorphism theorem there is the same effect on homology
in hSp after passing to Thom spectra. Using the quantitative version of the
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homology Whitehead theorem we conclude that the map is (2n− 1)-connected
as required.

In other words, the sequence of inclusions ΩSU(n)→ ΩSU(n+1) in TopBU
gives rise to a sequence of ring spectra maps · · · → X(n) → X(n + 1) → · · ·
that form a filtration of MU .

Remark. Lemma 2.5.8 shows that MU can be thought of as X(∞). On the
other hand, X(1) = S so the spectra X(n) could be interpreted as interpolating
steps between S and MU . We later expand on this remark dramatically and
see that this is precisely the perspective adopted in the proof of the nilpotence
theorem.

We now define a further refinement of the spectra X(n). Fix a unit vector
u ∈ Cn+1 and consider the fibration

SU(n)→ SU(n+ 1)
e−→ S2n+1

A 7→ Au.

Applying the loop space functor Ω we obtain the fibration

ΩSU(n)→ ΩSU(n+ 1)
Ωe−−→ ΩS2n+1

and recall that ΩS2n+1 ' JS2n where JS2n denotes the James construction
on S2n. The inclusion of a 2nk-skeleton JkS

2n ↪→ JS2n defines the pullback
bundle Bk := i∗ΩSU(n+ 1) and we can draw the diagram

ΩSU(n) ΩSU(n)

Bk := i∗ΩSU(n+ 1) ΩSU(n+ 1)

JkS
2n JS2n ' ΩS2n+1

id

i−1,0

Ωe

i

noting that Bk is only defined up to homotopy equivalence unless a particular
homotopy equivalence JS2n → ΩS2n+1 is chosen.

There is a compelling reason for the unusual name i−1,0 of the canonical
map Bk → ΩSU(n + 1) in the diagram. We later encounter the maps is,t for
more general s and t and the map i−1,0 fits into that framework.

Definition 2.5.9. Let Fk be the Thom spectrum associated to the map Bk =

i∗ΩSU(n+ 1)→ ΩSU(n+ 1)→ ΩSU
'−→ BU .

Note that the filtration J0S
2n ⊂ J1S

2n ⊂ . . . of JS2n by the partial James
constructions induces by taking pullback fibre bundles the sequence of maps

ΩSU(n) = B0 → B1 → · · · → ΩSU(n+ 1).



2. Background 17

Passing to Thom spectra yields a filtration

X(n) = F0 → F1 → · · · → X(n+ 1)

of X(n + 1). This hints at the role that the spectra Fk assume in the proof of
the nilpotence theorem. They serve as intermediate steps when passing between
X(n+ 1) and X(n). Phrasing this in a formal language we obtain:

Lemma 2.5.10. The spectra Fk are X(n)-module spectra and H∗(Fk;Z) is
a free H∗(X(n);Z) ∼= Z[x1, . . . , xn−1]-submodule of Z[x1, . . . , xn] generated by
1, xn, . . . , x

k
n.

Proof. As usual we prove the result in TopBU and then pass to hSp with the
Thom isomorphism theorem. Any map f : X → Y in Top can be replaced by a
fibration and then ΩY acts on the homotopy fibre of f by concatenation of loops.
This construction is revisited and explained in greater depth in Section 3.3.3.
The fibration ΩSU(n)→ Bk → JkS

2n extends to the right to the homotopy fibre
sequence ΩSU(n) → Bk → JkS

2n → SU(n) and so by the above construction
ΩSU(n) acts on the homotopy fibre of JkS

2n → SU(n) and hence on Bk. This
action makes Fk into an X(n)-module spectrum after passing to Thom spectra
and equips H∗(Fk;Z) with the H∗(X(n);Z)-module structure.

To calculate the homology H∗(Fk;Z) consider the Serre spectral sequence
for integral cohomology associated to the fibration ΩSU(n) → Bk → JkS

2n.
The cohomology of both the base and the fibre is known and concentrated in
even degrees, so all differentials in the spectral sequence are zero. By dualizing
this lets us compute the structure of H∗(Bk;Z) and hence H∗(Fk;Z) by the
Thom isomorphism theorem.

Definition 2.5.11. Let Gj = Fpj−1(p)
be the p-localisation of Fpj−1 at a prime

number p.

2.6 Adams spectral sequence

The Adams spectral sequence and its generalizations are the main tools of the
stable homotopy theory. There are many inequivalent definitions and conver-
gence results concerning these spectral sequences. This section introduces what
we shall call the Adams spectral sequence.

We shall use the non-classical Adams spectral sequence based on X(n+ 1).
For completeness, let us define the Adams spectral sequence based on any ring
spectrum E here.

Definition 2.6.1. A non-canonical Adams resolution for X based on E is the
diagram

X = X0 X1 X2 · · ·

K0 K1 K2
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in which each Xs+1 → Xs → Ks is a homotopy fibre sequence and Ks and
E ∧Xs are retracts of E ∧Ks.

Each homotopy fibre sequence Xs+1 → Xs → Ks → ΣXs+1 gives a long
exact sequence of homotopy groups. These comprise an exact couple and the
spectral sequence associated to this exact couple is called the Adams spectral
sequence for X based on E.

Under certain technical conditions (i.e. if E is flat) the E2-term of the
spectral sequence can be identified as a certain Ext group.

Remark. No knowledge of this is required to follow the proof of the nilpotence
theorem presented in this essay. This is because the information we shall need
to extract from our Adams spectral sequence is very coarse – so much so, that it
can be obtained using only the E1-page and the connectivity properties of Ks.

The Adams spectral sequence converges to π∗(X) under certain technical
conditions. The groups Es,t∞ (X) are the subquotients of πt−s(X) associated to
the Adams filtration of πt−s(X).

Definition 2.6.2. Let α : Sd → X be a map of spectra. The map α ∈ πd(X)
has Adams filtration s if s is the smallest integer such that α can be factored as

Sd
α1−→W1

α2−→ · · · αs−1−−−→Ws−1
αs−→ X

where E∗(αi) = 0 for each i. If there is no such integer s, then α has Adams
filtration 0.

Note that if E∗(α) 6= 0, then the Adams filtration of α is 0.

Definition 2.6.3. Let F sd = {α ∈ πd(X) | α has Adams filtration ≥ s}. Then
the filtration

· · · ⊂ F 2
d ⊂ F 1

d ⊂ F 0
d

is the Adams filtration of πd(X).

We can now give a more precise, although still an incomplete statement of
the convergence theorem.

Theorem 2.6.4. The Adams spectral sequences for X based on a ring spectrum
E considered in this essay converge to π∗(X). This means that

• Es,t∞ (X) ∼= F st−s
F s+1
t−s

for all s, t and

•
⋂∞
s=0 F

s
d = 0 for all d

where F sd denotes the abelian groups in the Adams filtration of πd(X).



3. NILPOTENCE THEOREM

3.1 Motivation

In the introduction we tried to explain how one might naturally arrive at the
statement of the nilpotence theorem, starting from a very basic and concrete
question in algebraic topology. However, this was historically not why the theo-
rem was conjectured, nor is it the best way to think about it presently. Studying
nilpotent self-maps may feel artificial and overly restrictive until a broader his-
torical context is introduced. Such a context is provided by Nishida’s theorem
[14].

Theorem 3.1.1 (Nishida’s theorem). Every element of positive degree of πS∗ is
nilpotent.

We prove this result as an elementary consequence of the nilpotence theo-
rem in the final chapter of this essay. Historically, however, Nishida’s theorem
preceded the nilpotence conjecture and in fact influenced its formulation and
served as evidence for its truth.

There are three ways to think about the ring structure on πS∗ . Let f, g ∈ πS∗ .
Then their product can be thought of roughly as:

− f ◦ g,

− f ∧ g or

− m(f, g).

The three perspectives hint at the fact that generalizations on the Nishida’s
theorem in different directions may be possible. Indeed, for each of the perspec-
tives, there is a corresponding version of the nilpotence theorem.

The first perspective emphasizes the study of self-maps f : ΣdS → S and
their suspensions.

Theorem 3.1.2 (Nilpotence theorem, self-map form). Let X be a finite spec-
trum and let α : ΣdX → X be a self-map for some d. If MU∗(α) = 0 then α is
nilpotent.

The second perspective emphasizes that the product in πS∗ comes from the
smash product.
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Theorem 3.1.3 (Nilpotence theorem, smash product form). Let F be a finite
spectrum and f : F → X a map of spectra. If idMU ∧f is null-homotopic, then
f is smash nilpotent.

The third perspective emphasizes the fact that S has the structure of a ring
spectrum with the abstract multiplication map denoted by m.

Theorem 3.1.4 (Nilpotence theorem, ring spectrum form). Let R be a ring
spectrum and let

h : π∗(R)→MU∗(R)

be the Hurewicz homomorphism. Then every element of kerh is nilpotent.

We first prove the ring spectrum form of the nilpotence theorem following
the Ravenel’s sketch of the proof [4], which in turn is mostly based on the
original paper by Devinatz–Hopkins–Smith [3]. Afterwards we deduce the other
two forms of the theorem and give some of its applications.

Remark. In the literature, one may find different variations of each of these
forms of the nilpotence theorem. This is because the assumptions on the original
spectra (e.g. connectivity, finiteness or finite type) are sometimes imposed for
the ease of the exposition and sometimes omitted for generality. We prove the
strongest versions of the ring spectrum and smash product forms, but a weaker
version of the self-map form for its nice classical interpretation.

3.2 Organization of the proof

This section describes the structure of this chapter. As mentioned, there are
several versions and variants of the nilpotence theorem and if we are not very
explicit, a confusion can arise as to which one we have in mind at any particular
moment. Therefore, let us be explicit about it. Most of this essay is dedicated to
proving the following theorem and whenever we refer to the ‘nilpotence theorem’,
it is likely that we mean this version.

Theorem 3.2.1 (Nilpotence theorem, weak ring spectrum form). Let R be a
connective ring spectrum of finite type and let

h : π∗(R)→MU∗(R)

be the Hurewicz homomorphism. Then every element of kerh is nilpotent.

Other forms of the nilpotence theorem (smash product form, strong ring
spectrum form, self-map form) are deduced from Theorem 3.2.1 in Sections 3.5,
3.6 and 3.7. The following schematic diagram depicts the implications we prove
in these sections.
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We now give an overview of the initial strategy of tackling the problem. It
turned out to be unsuccessful, but it did serve as a basis for more sophisticated
attempts, including the eventual proof.

3.2.1 Early Attempts

Early attempts at the proof of the nilpotence theorem tried to establish that
the spectra S and MU are Bousfield equivalent, see [4, Section 7.4]. A rough
structure of the proposed proof was as follows. Let α ∈ kerh.

• Step I: Show that MU ∧ α−1R is contractible.

• Step II: Show that 〈S〉 = 〈MU〉.

By the Bousfield equivalence it now follows that S ∧ α−1R = α−1R is con-
tractible. By definition α−1R is the homotopy colimit of

R
α−→ Σ−dR

α−→ Σ−2dR→ · · ·

Taking homotopy groups of the diagram and using the fact that π∗(α
−1R) = 0

shows that every element β ∈ π∗(R) satisfies αmβ = 0 for some m. In particular,
this is true for α ∈ πd(R) and so α is nilpotent as required.

Step I of the proposed proof is true and clear. On the other hand, Step II
was shown not to hold by Brown and Comenetz [10] who constructed a non-
contractible spectrum cY with MU∗(cY ) = 0. In fact, the spectrum S turned
out to live much higher than MU in the Bousfield hierarchy of spectra.

3.2.2 Large scale structure of the proof

The intuitive reason for why the proposed proof structure from the previous
section did not yield an actual proof is because the leap from S to MU is
too large. Instead, we resort to an infinite family of spectra X(n) with the
intention to interpolate between S and MU . These spectra have the property
that X(1) = S and X(∞) = MU so they subdivide the giant leap into infinitely
many smaller steps from X(n+ 1) to X(n).
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We will be performing “downwards induction”: provided X(n + 1)∗(α) is
nilpotent we show that X(n)∗(α) is also nilpotent. This lets us eventually
descend from X(∞)∗(R) = MU∗(R) to X(1)∗(R) = π∗(R) and thus show that
the original element α ∈ π∗(R) is nilpotent.

The inductive step is the challenging part of the proof. It is performed p-
locally, one prime at a time. To descend fromX(n+1) toX(n) we make transfers
from X(n+ 1)(p) to X(n)(p) for each prime p. To that end we have constructed
a further infinite family of spectra Gj with the property that G0 = X(n)(p) and
G∞ = X(n + 1)(p) and whose purpose is to interpolate between X(n)(p) and
X(n + 1)(p). To make this more precise, we state two crucial properties they
possess.

Step I: Let α ∈ kerh. If X(n+ 1)(p)∗(α) is nilpotent, then Gj ∧ α−1R is
contractible for sufficiently large j.

This step describes how the spectra Gj approximate X(n+ 1)(p).

Step II: Show that 〈Gj〉 = 〈Gj+1〉 for each j ∈ N0.

In particular, this means that 〈Gj〉 = 〈X(n)(p)〉 so this step describes how
the spectra Gj approximate X(n)(p).

Remark. Notice the resemblance between this and the attempt in Section 3.2.1:
the same idea is replicated on a smaller scale. Whereas we originally hoped to
resolve the problem (i.e. pass from S to MU) using these two steps, they will
now be used to complete the inductive step (i.e. pass from X(n+ 1) to X(n)).

Most of the content of the nilpotence theorem is in the proof of these two
properties of the interpolating spectra Gj . Once they are established, the in-
ductive step can be completed by an elementary observation reminiscent of the
one given in 3.2.1. It will be written out in full in section 3.3.4.

Remark. In the rest of the essay, we deal almost exclusively with p-local spectra
and we omit the subscript (p) for legibility.

Remark. We have chosen the inductive step to be n + 1 → n instead of a
seemingly more natural n → n − 1 to maintain consistency with the literature
and enhance the legibility of the essay.

3.3 Proof

For the entire proof we fix α ∈ kerh. Say α ∈ πd(R). We show that α is
nilpotent.

Because α is nilpotent iff αm is nilpotent one may without loss of generality
replace α by any of its powers αm. This observation will be very convenient at
various stages of the proof.
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3.3.1 Preliminary lemma

We begin the proof with a preliminary lemma in which we exhibit a certain
fibration. This fibration is used extensively in Step II of the proof to relate the
Bousfield equivalence classes 〈Gj〉 and 〈Gj+1〉, and the proof of the following
lemma is is also required in Step I.

Lemma 3.3.1. There is a fibration Bpj−1 → Bpj+1−1
q−→ Jp−1S

2pjn.

We construct this fibration as a pullback of another fibration

Bpj−1 → ΩSU(n+ 1)
h−→ ΩS2pjn+1

along the inclusion map Jp−1S
2pjn ↪→ JS2pjn ' ΩS2pjn+1. This may not be the

most direct way of establishing the lemma, but both of these fibrations together
with their relationship are important later in the proof.

Proof. Recall the following commutative diagram from Section 2.5 obtained by
looping the fibration SU(n)→ SU(n+ 1)

e−→ S2n+1 and taking its pullback.

ΩSU(n) ΩSU(n)

Bk = i∗ΩSU(n+ 1) ΩSU(n+ 1)

JkS
2n JS2n ' ΩS2n+1.

id

i−1,0

Ωe

i

This construction was used to define the spaces Bk. Specializing to the case
k = pj − 1, we now extend the bottom two rows to homotopy fibre sequences.

Let us start with the bottom row. We claim that there is a homotopy fibre

sequence Jpj−1S
2n → ΩS2n+1 H−→ ΩS2npj+1 where H is the James-Hopf map

defined in 2.3.3 by taking X = S2n. To see this, consider the homological Serre
spectral sequence with coefficients in Fp associated to H. Both the total space
and the base are of the type ΩSm and their homology is

Hi(ΩS
m;Fp) ∼=

{
Fp i ∈ {0, m− 1, 2(m− 1), . . . }
0 otherwise

which is obtained by another standard application of the Serre spectral sequence.
Let F be the homotopy fibre of H. For purely geometrical reasons there are
no differentials entering any of the groups Er0,q = Hq(F ;Fp) for q ≤ 2pjn − 2.
Thus the non-trivial homology groups of F in this range are Hq(F ;Fp) ∼= Fp for
q ∈ {0, 2n, . . . , 2n(pj − 1)}. The first potentially non-trivial differential is the

transgression E2pjn
2pjn,0 → E2pjn

2pjn−1,0. However, recall that the James-Hopf map
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H induces a surjection on (mod p) homology as discussed in Section 2.3. By
naturality of the Serre spectral sequence, this surjection factorises as

H2pjn(ΩS2n+1;Fp)→ E∞2pjn,0 → H2pjn(ΩS2pjn+1;Fp)

through E∞2pjn,0 and so E∞2pjn,0
∼= Fp. It follows that the transgression differen-

tial is the zero map too.
By dualizing, considering the Serre spectral sequence for cohomology and

using its multiplicative structure we deduce that all differentials in the spectral
sequence are the zero maps. This completely determines the homology and
cohomology groups of F and these are precisely those of Jpj−1S

2n. Therefore

Jpj−1S
2n i−→ ΩS2n+1 H−→ ΩS2pjn+1

is a homotopy fibre sequence and hence so is

Bpj−1
i−1,0−−−→ ΩSU(n+ 1)

h:=H◦Ωe−−−−−−→ ΩS2pjn+1

because the lower part of the diagram above is a pullback square. The entire
construction is best described with the following diagram:

ΩSU(n) ΩSU(n)

Bpj−1 ΩSU(n+ 1) ΩS2pjn+1

Jpj−1S
2n JS2n ' ΩS2n+1 ΩS2pjn+1.

id

i−1,0

Ωe

H◦Ωe

id

H

We have shown that the middle row of this diagram is a fibration. The fibra-
tion in the statement of this lemma will be constructed by taking its pullback
along Jp−1S

2pjn ↪→ JS2pjn ' ΩS2pjn+1.

The rest of the argument has a very similar character to what we have
already seen. In fact, this is more than a coincidental similarity; we literally
apply the same construction to the diagram

Bpj−1 Bpj−1

F ΩSU(n+ 1)

Jp−1S
2pjn ΩS2pjn+1

id

h

where F is now the pullback that we wish to describe more explicitly.
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Let H ′ : ΩS2pjn+1 → ΩS2pj+1n+1 be a James-Hopf map. It induces a
surjection on (mod p) homology and by an analogous analysis of the Serre
spectral sequence for (mod p) homology and cohomology we obtain that

Jp−1S
2pjn → ΩS2pjn+1 H′−−→ ΩS2pj+1n+1

is a homotopy fibre sequence. As earlier because F is the pullback

F → ΩSU(n+ 1)
H′◦H◦Ωe−−−−−−→ ΩS2pj+1n+1

is a homotopy fibre sequence too. So it can be identified with the fibration

Bpj+1−1 → ΩSU(n+ 1)→ ΩS2pj+1n+1

obtained in the first part of this argument. The fibration

Bpj−1 → Bpj+1−1
q−→ Jp−1S

2pjn

follows as required.

Remark. This remark is best read once one is roughly comfortable with the
proof of the nilpotence theorem. We have not only constructed the fibration
required by Lemma 3.3.1. In addition, we have exhibited a larger diagram

Bpj−1 Bpj−1

Bpj+1−1 ΩSU(n+ 1)

Jp−1S
2pjn JS2pjn

id

q h

in which the base spaces are the James construction and the partial James
construction. Let us share some informal intuition about the role of this diagram
in the proof.

I like to think of the spectra X(n) = G0, G1, . . . , G∞ = X(n + 1) as points
in a topological space homeomorphic to a 1-point compactification of N. Taking
the Bousfield equivalence classes is then a function 〈·〉 into a totally ordered
discrete set. This function is locally constant since 〈Gj〉 = 〈Gj+1〉 (this is
proven in Step II), but it is not globally constant since 〈Gj〉 < 〈G∞〉. The point
of discontinuity is represented by the digram above.

The claim that 〈Gj〉 = 〈Gj+1〉 is proven using induction by considering the

James filtration of the partial James construction Jp−1S
2pjn. This fails for

JS2pjn since the James filtration contains infinitely many terms and induction
can no longer be applied. As a result of this failure we have 〈X(n)〉 < 〈X(n+1)〉.
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3.3.2 Step I

Proposition 3.3.2. Let X(n + 1)∗(α) be nilpotent. Then Gj ∧ α−1R is con-
tractible for sufficiently large j.

In this section, we prove the first crucial ingredient of the proof. We have
mentioned that the purpose of Steps I and II is to descend from X(n + 1) to
X(n). A sequence of intermediate spectra Gj was constructed to interpolate
between the two. Proceeding in this spirit, we can describe the content of the
Proposition 3.3.2 as:

3.3.2 shows how the Gj approximate X(n+ 1).

Dually, Step II will describe a way in which the Gj also approximate X(n).

To show that Gj ∧ α−1R is contractible, it is sufficient to establish that its
homotopy groups vanish and this is what we shall do. This is most naturally
done by studying suitable Adams spectral sequences for π∗(Gj), π∗(R) and thus
for π∗(Gj ∧R).

The proof presented in this essay has a geometric flavour. Following Ravenel
[4, Section 9.2] we construct the Adams resolution for Gj through explicit cob-
fibre sequences of spaces. Studying their connectivity allows us to establish the
existence of vanishing lines with arbitrarily small slopes in the Adams spectral
sequence for π∗(Gj). Using the connectivity of R, the conclusion follows quickly
thereafter.

Proof. We follow this list of steps.

– 1 – Construct a non-canonical Adams resolution for Gj based on X(n+ 1) of
the form

Gj = X0 X1 X2 · · ·

K0 K1 K2

f0 f1 f2 .

– 2 – Show that Ks is (2pjn− 1)s-connected.

– 3 – Using the first two points and the connectivity of R, establish vanishing
lines with slopes 1

2pjn−1 in the Adams spectral sequence for π∗(Gj ∧R).

– 4 – Conclude that Gj ∧ α−1R is contractible.

– 1 –

We begin with an inductive construction of a non-canonical Adams resolution
for Gj based on X(n+ 1). Let it be of the form

Gj = X0 X1 X2 · · ·

K0 K1 K2

f0 f1 f2 .
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Recall the fibration Bpj−1 → ΩSU(n + 1)
h−→ ΩS2pjn+1 constructed in Lemma

3.3.1. Thomification yields a map of spectra f0 : Gj → X(n + 1) and let this
be the map f0 in the Adams resolution. This defines X1 as the cofibre of f0

and starts the induction. The maps fs for s ≥ 1 will be constructed by first
exhibiting cofibre sequences of spaces

Ys → Ls → Ys+1

which are used to obtain fibre sequences of spectra

Xs+1 → Xs
fs−→ Ks

after Thomifying and taking suitable suspensions.

To motivate the next definition, we remark that the maps is,t for suitable
s and t will be used to define the cofibrations Ys → Ls we aim to construct.
Let B = ΩS2pjn+1 and ∗ ∈ B be a basepoint. For any s ∈ N0 define Hs =
∗×B×· · ·×B×ΩSU(n+1) where there are s factors of B. For t ∈ {0, . . . , s+1}
define maps is,t : Hs → Hs+1 by

is,t(∗, b1, . . . , bs, e) =


(∗, ∗, b1, . . . , bs, e) | t = 0

(∗, b1, . . . , bt, bt, bt+1, . . . , bs, e) | t ∈ {1, . . . , s}
(∗, b1, . . . , bs, h(e), e) | t = s+ 1.

Less rigorously, but more intuitively, one can think of the maps is,t as trying
to double the coordinate bt. This can mostly be done, but there is a problem
when t = s+ 1, because the bs+1 does not exist. A slight modification leads to
the definition of the maps is,t.

Now define the spaces

Ys =
Hs−1

im is−2,0 ∪ · · · ∪ im is−2,s−1

Ls =
Hs

im is−1,0 ∪ · · · ∪ im is−1,s−1
.

Instead of trying to decipher the meaning of the indices in the expressions above,
it may be easier to use the following intuitive characterisation of the collapsed
subspaces.

• In both cases the collapsed subspace contains the points in which some
two consecutive coordinates are the same.

The collapsed subspace in the definition of Ls is completely determined by these
two properties. For Ys we additionally have:

• The collapsed subspace in the definition of Ys contains the points with
bs−1 = h(e) i.e. points of the form (∗, b1, . . . , bs−2, h(e), e).
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Henceforth, the map is−1,s : Hs−1 → Hs for s ≥ 1 induces a well-defined map

Ys → Ls

(∗, b1, . . . , bs−1, e) 7→ (∗, b1, . . . , bs−1, h(e), e).

To verify that this is indeed well-defined, we can use the characterisation of the
collapsed subspaces. Let b ∈ Ys be a point in the collapsed subspace of Ys. If
b satisfies the first condition, its image clearly does too. If b satisfies the last
condition, then bs−1 = h(e) and the image of b has two consecutive coordinates
that are the same. Hence in either case the image of b is collapsed in Ls and
the map is well defined.

The map fs : Ys → Ls is clearly injective. Its cofibre is

Ls
ims−1,s

=
Hs

im is−1,0 ∪ · · · ∪ im is−1,s
= Ys+1.

Therefore we have constructed cofibre sequences of spaces Ys → Ls → Ys+1.

The next step is to Thomify these cofibre sequences into cofibre sequences
of spectra and thus construct an Adams resolution of Gj . To do this, consider
the projection maps ps : Hs → ΩSU(n+ 1) ↪→ BU given via (b1, . . . , bs, e) 7→ e
making Hs, Ys and Ls into objects of TopBU . Moreover, it is clear that the
maps is−1,s and their restrictions Ys → Ls are morphisms in TopBU . Therefore
we can Thomify the construction to obtain a cofibre sequence of spectra

Y ps−1
s

fs−→ Lpss → Y pss+1

as required. Letting Ks = Σ−sLpss and Xs = Σ−sY
ps−1
s we obtain homotopy

fibre sequences Xs+1 → Xs
fs−→ Ks of spectra and thus a non-canonical Adams

resolution for Gj as required.

– 2 –

We have constructed a non-canonical Adams resolution forGj based onX(n+1),
a development corresponding to the first point of the plan we had outlined prior
to starting with the proof. There seems to be only one natural continuation:
consider the Adams spectral sequence associated to this resolution. Unfortu-
nately, we would not learn much about Gj if we attempted this immediately
for the resolution is sufficiently mysterious. Instead, we first establish some
connectivity properties of the spectra Ks and then consider the Adams spectral
sequence. The connectivity information alone allows us to extract all that we
need from the spectral sequence.

In order to study the connectivity of the spectra Ks, we calculate the
structure of the graded abelian group H̃∗(Ls;Fp). Note the homeomorphism

L1 = H1

i0,0
∼= ∗×B×ΩSU(n+1)
∗×∗×ΩSU(n+1)

∼= B ∧ ΩSU(n + 1)+ which yields by the Künneth

theorem H̃∗(L1;Fp) ∼= H̃∗(B;Fp)⊗H∗(ΩSU(n+ 1);Fp). We shall now prove a
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corresponding formula for the homology of any Ls. Recall that these are defined
defined via the cofibre sequences

im is−1,0 ∪ · · · ∪ im is−1,s−1 → Hs → Ls

where the subspace Ts := im is−1,0∪ · · · ∪ im is−1,s−1 has an explicit description

Ts = {(b0, b1, . . . , bs, e) ∈ Hs | bi = bi+1 for some i}.

Note that b0 = ∗ by definition of Hs. We can write Ts =
⋃s−1
i=0 T

i where

T i = {(b0, b1, . . . , bs, e) ∈ Ts | bi = bi+1}.

Therefore Ts can be expressed as the union of two spaces
⋃s−2
i=0 T

i and T s−1

with the following intuitive description.

• The space
⋃s−2
i=0 T

i has two consecutive equal coordinates bi = bi+1 for
some 0 ≤ i ≤ s − 2 and the coordinate bs can be arbitrary. Therefore⋃s−2
i=0 T

i ∼= Ts−1 ×B.

• The space T s−1 satisfies bs−1 = bs and all other coordinates are arbitrary.
So T s−1 ∼= Hs−1. Note in particular that the inclusion φs : Hs−1 → Ts is
given by (b0, . . . , bs−1, e) 7→ (b0, . . . , bs−1, bs−1, e).

• Their intersection
(⋃s−2

i=0 T
i
)
∩T s−1 is homeomorphic to Ts−1 by combin-

ing both of the above descriptions.

This gives a pushout square

Ts−1 Hs−1

Ts−1 ×B Ts

φs

and so Ls = Hs
Ts

can be obtained from Hs in two steps by first collapsing Ts−1×B
and then the rest of Ts. Formally, the cofibre of the inclusion Ts−1 × B → Ts
is given by Hs

Ts−1×B
∼= Hs−1×B

Ts−1×B
∼= Hs−1

Ts−1
∧ B+. Under this homeomorphism, we

consider the cofibre sequence

Hs−1

Ts−1

φs−→ Hs−1

Ts−1
∧B+ →

Hs

Ts
= Ls

to collapse the rest. Since Hs−1

Ts−1
= Ls−1 this will inductively allow us to compute

the homology of Ls. Note from discussion above that the map φs is the identity
on the first factor and it extracts the coordinate bs−1 on B+.

As a morphism in Top, the map φs is in general not homotopic to id∧∗+,
nor do they induce the same map on homology. However, they only differ by
the automorphism

ψ = (π1∗ − π2∗ + ∗∗) ◦ (φs ∧ idB+
)∗
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of H∗

(
Hs−1

Ts−1
∧B+;Fp

)
where πi : B × B → B for i ∈ {1, 2} are the projection

maps and ∗ : B ×B → B is the constant map ∗. With some abuse of notation,
one could say that the automorphism ψ is induced by

Hs−1

Ts−1
∧B+

Hs−1

Ts−1
∧B+ ∧B+

Hs−1

Ts−1
∧B+

φs∧idB+ id∧(π1−π2+∗)

where the dashed arrow represents that the second map is not a well-defined
map in Top – it is a sum of maps. However, the expression becomes well-defined
upon passing to homology. An elementary calculation

(ψ ◦ (id∧∗+)∗)(b0, . . . , bs−1, e) = ψ(b0, . . . , bs−1, ∗, e)
= ((π1)∗ − (π2)∗ + ∗∗)(b0, . . . , bs−1, bs−1, ∗, e)
= (b0, . . . , bs−1, bs−1, e)

shows that ψ ◦ (id∧∗+)∗ = (φs)∗ so φs and id∧∗+ only differ by an automor-
phism upon passing to homology.

The upshot is that the long exact sequences on homology groups induced
by the cofibre sequences associated to φs and id∧∗+ are the same up to an
automorphism and the latter is well-understood. Namely, it splits into short
exact sequences as

0→ H̃k

(
Hs−1

Ts−1
;Fp
)
→

⊕
i+j=k

H̃i

(
Hs−1

Ts−1
;Fp
)
⊗ H̃j(B+;Fp)→ H̃k(Ls;Fp)→ 0

using the Künneth isomorphism to express the homology of Hs−1

Ts−1
∧ B+ as a

tensor product. It follows that

H̃∗(Ls;Fp) ∼= H̃∗

(
Hs−1

Ts−1
∧B;Fp

)
∼= H̃∗(Ls−1;Fp)⊗ H̃∗(B;Fp)

∼= H̃∗(B
∧s−1;Fp)⊗H∗(ΩSU(n+ 1);Fp)⊗ H̃∗(B;Fp)

∼= H̃∗(B
∧s;Fp)⊗H∗(ΩSU(n+ 1);Fp)

where we use the induction hypothesis to pass to the middle row and other
isomorphisms come from purely algebraic manipulations and applications of
the Künneth theorem. This completes the inductive step and it follows that
H̃∗(Ls;Fp) ∼= H̃∗(B

∧s;Fp)⊗H∗(ΩSU(n+ 1);Fp).

We have now expressed the homology of Ls in a convenient form, but ulti-
mately we would like to know about the connectivity of Ks. The translation
between these results is obtained by a few applications of the Hurewicz’s theo-
rem and the Thom isomorphism theorem in the next paragraph.

Recall that B = ΩS2pjn+1. We have πi(ΩS
2pjn+1) ∼= πi+1(S2pjn+1) from the

long exact sequence of homotopy groups associated to the path fibration. The
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sphere S2pjn+1 is (2pjn)-connected and it follows that ΩS2pjn+1 is (2pjn− 1)-

connected. By Hurewicz’s theorem the reduced homology groups H̃i(ΩS
2pjn+1;Z)

vanish for i ≤ 2pjn − 1 too. Using the Universal coefficients theorem and the
Künneth theorem yet again we obtain

H̃i(B
∧s;Fp) ∼=

⊕
i1+···+is=i

H̃i1(B;Fp)⊗ · · · ⊗ H̃is(B;Fp).

Since we are working p-locally, the Hurewicz’s theorem gives that the space B∧s

is (2pjn− 1)s-connected. Therefore Ls is (2pjn− 1)s-connected too and finally
so is Ks by the Thom isomorphism theorem.

– 3 –

With this connectivity information at our disposal, we may now study the
Adams spectral sequence. The Adams resolution for Gj can be used to con-
struct a resolution for Gj ∧R. By smashing every spectrum and map by R we
obtain the diagram

Gj ∧R = X0 ∧R X1 ∧R X2 ∧R · · ·

K0 ∧R K1 ∧R K2 ∧R

f0∧idR f1∧idR f2∧idR

in which Xs+1∧R→ Xs∧R→ Ks∧R is a homotopy fibre sequence for each s.
This is a non-canonical Adams resolution for Gj ∧R based on X(n+ 1). Each
of these cofibre sequences induces a long exact sequence of homotopy groups

· · · → πi(Xs+1 ∧R)→ πi(Xs ∧R)→ πi(Ks ∧R)→ · · ·

and these constitute an exact couple. The corresponding spectral sequence is
the Adams spectral sequence converging to π∗(Gj ∧R) based on X(n+ 1).

The E1-page of this spectral sequence has Es,t1 (Gj ∧R) = πt−s(Ks∧R). Re-
call that Ks is (2spjn−s)-connected and by the initial assumption of the nilpo-
tence theorem R is connective i.e. N -connected for some N ∈ Z. Combining
the two connectivity results we obtain that Gj ∧R is (2spjn−s+N)-connected.
Therefore

Es,t1 (Gj ∧R) = 0 for t− s ≤ (2pjn− 1)s+N.

It follows that the same is true on the E2-page of the spectral sequence:

Es,t2 (Gj ∧R) = 0 for t− s ≤ (2pjn− 1)s+N.

We can represent the groups of the E2-page of the spectral sequence as lattice
points in the plane. Using the coordinate system with coordinates (t− s, s) the
paragraph above shows that the groups Es,t2 (Gj ∧R) vanish above the line

s =
1

2pjn− 1
(t− s)− N

2pjn− 1
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with the slope 1
2pjn−1 . The crucial property of this family of vanishing lines is

that they can be made arbitrarily close to a horizontal line: their slope tends
to 0 as j →∞. This concludes the third point of the plan.

– 4 –

Notice that the discussion so far was centred around the properties of the spec-
tral sequences of π∗(Gj) and π∗(Gj ∧ R) and the element α ∈ πd(R) has not
yet played a role. Since we are ultimately interested in the homotopy groups
π∗(Gj ∧α−1R), let us consider α. One of the assumptions of this proposition is
that X(n + 1)∗(α) is nilpotent. We have justified in 3.3 that we may without
loss of generality at any point replace α by any of its powers αm. We do so at
this point to make X(n+ 1)∗(α) = 0. Therefore the Adams filtration of α is 1.

The Adams spectral sequence for R based on X(n + 1) converges to the
homotopy groups of R and F 1

d /F
2
d
∼= E1,d+1

∞ (R) = ∩r>1E
1,d+1
r (R). Let α̂ ∈

E1,d+1
2 (R) be an element on the E2-page detecting α ∈ F 1

d ⊂ πd(R). Then
α̂ lies on the line through the origin with a slope of 1

d in the Adams spectral
sequence for π∗(R). Let us now fix j ∈ N sufficiently large so that 1

2pjn−1 <
1
d .

Moving to the spectral sequence for π∗(Gj ∧ R), let β ∈ π∗(Gj ∧ R) be
arbitrary. The map of spectra R → Gj ∧ R induces an action of π∗(R) on
π∗(Gj ∧R). Let β be detected by β′ ∈ Eu,v2 (Gj ∧R) and idGj ∧α ∈ πd(Gj ∧R)

be detected by α′ ∈ E1,d+1
2 (Gj ∧ R). If βαm 6= 0, then it is detected by an

element
β′α′

m ∈ Eu+m,v+md
2 (Gj ∧R).

For sufficiently large m, the point (u+m, v+md) lies above the vanishing line,
since the slope of the vanishing line is 1

2pjn−1 <
1
d by the choice of j. It follows

that Eu+m,v+md
2 (Gj ∧ R) vanishes and in particular βαm = 0 in π∗(Gj ∧ R).

Therefore β = 0 in π∗(Gj ∧ α−1R). Because β was arbitrary it follows that
π∗(Gj ∧ α−1R) = 0 and so Gj ∧ α−1R is contractible for sufficiently large j as
required.

Remark. The only reason for passing to the E2-page of the spectral sequence in
this argument is that the E2-page and all subsequent pages are independent of
the choice of the Adams resolution. This simplifies the exposition linguistically:
we can refer to ‘the E2-page’ instead of to ‘the E1-page associated to our non-
canonical Adams resolution’.

Remark. The nilpotence theorem can be rephrased by saying that the E∞-page
of the Adams-Novikov spectral sequence for π∗(R) (based on X(n) or MU)
contains vanishing lines of arbitrarily small slopes. It then follows exactly as in
the above proof that every α ∈ π∗(R) detected by the Hurewicz homomorphism
is nilpotent.

This is why we emphasize that the above proof gives vanishing lines on the
E2-page of the spectral sequence for π∗(Gj ∧R), but it says nothing about the
E2-page of the spectral sequence for π∗(R). Indeed, in this spectral sequence
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such vanishing lines only exist at the E∞-page and it is very hard to show that
they do. An entire Step II is dedicated to establishing the machinery powerful
enough to leverage the information from π∗(Gj ∧R) to π∗(R).

3.3.3 Step II

Proposition 3.3.3. 〈Gj〉 = 〈Gj+1〉 for any j.

In this section we prove the second crucial proposition. Since G0 = X(n), the
claim can be rephrased by saying that 〈Gj〉 = 〈X(n)〉 for all j. This completes
our intuitive description of the inductive step:

3.3.3 shows how the Gj approximate X(n).

This is the deepest, conceptually the most complex part of the nilpotence
theorem. It involves a lot of technically detailed calculations with very specific
spectra. In order to facilitate the understanding of the proof, we outline the
main intermediate steps before delving into rigour. We follow the plan:

1. Define a map b : Gj → Σ−|b|Gj .

2. Prove that 〈Gj〉 = 〈Gj+1〉 ∨ 〈b−1Gj〉.

3. Prove that b−1Gj is contractible.

Proposition 3.3.3 follows immediately from these three claims, each of which
is involved by itself. To give an overview of the large scale proof structure we
propose the following substeps:

1. Define a map b : Gj → Σ−|b|Gj .

(i) Construct a filtration Bpj−1 = E0 ⊂ · · · ⊂ Ep−1 = Bpj+1−1.

(ii) Establish equivalences θk : Eξk/E
ξ
k−1 → Σ2mkEξ0 .

(iii) Use θk and the associated cofibre sequences to define b.

2. Prove that 〈Gj〉 = 〈Gj+1〉 ∨ 〈b−1Gj〉.

3. Prove that b−1Gj is contractible.

(i) Establish the factorization of b via

Σ2mp−2Gj Gj

S2mp−2 ∧Gj Σ∞Ω2S2m+1
+ ∧Gj

id

b

γ∧id

µ

(ii) Using the properties of the Snaith’s splitting structure of Ω2S2m+1
+

and the diagram in (i) show that idb−1Gj factorizes as b−1Gj → HFp ∧
Gj → b−1Gj .

(iii) Prove that HFp∗(b) = 0 and hence that HFp∧Gj is contractible.



3. Nilpotence Theorem 34

We believe this list of steps could serve as a useful reference worth revisiting
if one loses the big picture while studying the details. It is intended as a map
guiding the reader through the proof.

This section is divided into subsections corresponding to the main steps of
the plan. Each of the subsections begins with an outline of the step followed by
a complete proof.

Construction of b : Gj → Σ−|b|Gj

The aim of this subsection is to construct a map b : Gj → Σ−|b|Gj . This is the
central object of the entire nilpotence theorem and most of the proof is dedicated
to establishing its definition, alternative formulations and factorizations. The
purpose of b is to relate the Bousfield equivalence classes of Gj and Gj+1.

Recall that Gj and Gj+1 are already related for they are the p-localisations of
the Thom spectra associated to Bpj−1 and Bpj+1−1. There is a natural injection
Bpj−1 ↪→ Bpj+1−1 inducing a map of spectra Gj → Gj+1. One could consider
the cofibre of this map, relate it to Gj and then associate b to this setting.

However, there is a good reason to construct b in a greater generality, and we
shall do that. The reason is that the same construction associated to different
spaces reappears later in the proof and a more general treatment allows us to
then refer to this section. We will associate a map b : Eξ0 → Σ−|b|Eξ0 to any
fibration

E0 → Ep−1
q−→ Jp−1S

2m

with a map ξ : Ep−1 → BU . When this construction is applied to the fibration

Bpj−1 → Bpj+1−1
q−→ Jp−1S

2pjn

constructed in Lemma 3.3.1, it yields a map b : Gj → Σ−|b|Gj since Gj is the
Thom spectrum associated to Bpj−1.

Formally, consider the category with objects (Ep−1, q, ξ) as above and in
which the morphisms f : (Ep−1, q, ξ)→ (E′p−1, q

′, ξ′) are given by commutative
diagrams

Ep−1 E′p−1

BU

f

ξ

ξ′
and

Ep−1 E′p−1

Jp−1S
2m

f

q

q′
.

The association F : (Ep−1, q, ξ) 7→ Eξ0 is a functor from this category to hSp.
Commutativity of the right triangle gives a map between the fibres and commu-
tativity of the left triangle guarantees that this map is a morphism in TopBU .
Passing to Thom spectra yields a morphism in hSp. By construction it is now
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clear that F is a functor. The map b = b(Ep−1, q, ξ) we aim to construct turns
out to be a natural transformation between Σ2mp−2F and F .

Let us begin by constructing b. By taking pullbacks of q along the inclusion
maps

J0S
2m ↪→ J1S

2m ↪→ · · · ↪→ Jp−1S
2m

we obtain a commutative diagram

E0 E1 . . . Ep−1

J0S
2m J1S

2m . . . Jp−1S
2m.

q

In particular J0S
2m = {∗} so E0 is the fibre of q. Consider the composition

Ep−1
(q,id)−−−→ Jp−1S

2m×Ep−1
π2−→ Ep−1

ξ−→ BU . By passing to Thom spectra we
obtain a map

Eξp−1 → Σ∞Jp−1S
2m
+ ∧ Eξp−1.

Further define the maps

θk : Eξp−1 → Σ∞Jp−1S
2m
+ ∧ Eξp−1 → S2mk ∧ Eξp−1 ' Σ2mkEξp−1

where Σ∞Jp−1S
2m
+ → S2mk is obtained by choosing a splitting Σ∞Jp−1S

2m
+ '∨p−1

j=0 S
2mj due to the stable version of the Theorem 2.3.2.

There is a natural filtration Eξ0 → Eξ1 → · · · → Eξp−1 of Eξp−1 and we will be

interested in the restrictions of θk to Eξi for i ∈ {1, . . . , p− 1}. At the moment,

Eξi → JiS
2m
+ ∧ Eξi is just a map of spectra, but we shall show that it actually

preserves the smash product filtration on JiS
2m
+ ∧Eξi , at least up to homotopy.

We need this because it lets us establish some equivalences induced by the θk
in the technical Lemma 3.3.4 and then we can finally use those to define b.

The spheres are suspensions and hence co-H-spaces, so the diagonal map
S2m → S2m×S2m and the co-H-space map S2m → S2m∨S2m → S2m×S2m are
homotopic. By applying the partial James construction we obtain a homotopy
H : Jp−1S

2m× I → Jp−1S
2m×Jp−1S

2m between the diagonal map ∆0 and the
map ∆1 induced by the co-H-space map

∆0 : Jp−1S
2m → Jp−1S

2m × Jp−1S
2m

∆1 : Jp−1S
2m → Jp−1(S2m ∨ S2m)→ Jp−1S

2m × Jp−1S
2m.

Note that if Jp−1S
2m is filtered using the James filtration J0S

2m ↪→ J1S
2m ↪→

· · · ↪→ Jp−1S
2m and we equip Jp−1S

2m × Jp−1S
2m with the product filtration

(in which the degree k terms are
⋃k
i=0 JiS

2m × Jk−iS2m), then ∆1 is filtration
preserving.
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In the next paragraph we try to lift ∆0, ∆1 and H. Since q is a fibration, so
is id×q : Jp−1S

2m × Ep−1 → Jp−1S
2m × Jp−1S

2m. Using the homotopy lifting
property we can lift H to the diagonal of the diagram

Ep−1 × I Jp−1S
2m × Ep−1

Jp−1S
2m × I Jp−1S

2m × Jp−1S
2m.

H̃

q×id id×q

H

and use this diagonal to define the top map H̃ such that the square commutes.
It is now easy to verify that H̃0 := H̃|Ep−1×{0} = (q, id) and hence by passing

to Thom spectra we recover the map Eξp−1 → Σ∞Jp−1S
2m
+ ∧Eξp−1 that appears

in the definition of θk. The homotopy H̃ shows that it is homotopic to a map
obtained by Thomifying H̃1 := H̃|Ep−1×{1}. But H̃1 is filtration preserving even
before passing to Thom spectra because ∆1 is and the square commutes.

We are now well-prepared for the following lemma, which is the technical
heart of this section. Studying its proof may be skipped during the first reading
or altogether. The purpose of this lemma is to establish some equivalences that
are required to give the definition of b. Notationally, we follow our convention
that all restrictions of θk and all maps on cofibres induced by θk will also be
denoted by θk. This convention is useful, because looking at the expressions

such as θk|Eξi /Eξi−1
:

Eξi
Eξi−1

→ Σ2mk Eξi−k

Eξi−k−1

hurts.

Lemma 3.3.4. (i)The composition
Eξi
Eξi−1

θk−→ Σ2mk Eξi−k

Eξi−k−1

θj−→ Σ2m(k+j) Eξi−k−j

Eξi−k−j−1

is equal to θk+j for k + j ∈ {1, . . . , p− 1}.
(ii) There is an equivalence θk : Eξk/E

ξ
k−1 → Σ2mkEξ0 for any k ∈ {1, . . . , p−1}.

(iii) There is an equivalence θ1 : Eξp−1/E
ξ
0 → Σ2mEξp−2.

Proof. We prove parts (ii) and (iii) and refer to [3, Lemma 3.9] for part (i).

(ii) We first establish a commutative diagram of pairs of spaces

(∗ × Ek, ∗ × Ek−1) ((S2mk × E0) ∪ (∗ × Ek), ∗ × Ek)

(∗ × JkS2m, ∗ × Jk−1S
2m) (S2mk ∨ JkS2m, ∗ × JkS2m).

∗×q π1∪∗×q

It is clear that the vertical maps are well-defined maps of pairs. The bottom
map ∗ × JkS2m → S2mk ∨ JkS2m is given by

∗ × JkS2m ∼= JkS
2m ∆1−−→

k⋃
i=0

JiS
2m × Jk−iS2m δ−→ S2mk × ∗ ∪ ∗ ×

k−1⋃
i=0

Jk−iS
2m
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where the first map is well-defined because ∆1 is filtration preserving. The
second map δ is a projection onto the second factor for all i 6= k and it is

induced by JkS
2m → JkS

2m/Jk−1S
2m ∼= (S2m)

∧k ∼= S2mk for i = k. Note that
because ∆1 preserves the filtration on JkS

2m we have

δ
(
∆1

(
∗ × Jk−1S

2m
))
⊂ δ

(
k−1⋃
i=0

JiS
2m × Jk−1−iS

2m

)
⊂ ∗ × JkS2m.

Therefore the bottom map is a map of pairs. Similarly, the top map can be
defined using H̃1 in place of ∆1 and it similarly follows that it is a map of
pairs. Note that we are crucially using the fact that ∆1 and H̃1 are filtration
preserving.

The mapH∗(∗×JkS2m, ∗×Jk−1S
2m;Fp)→ H∗(S

2mk∨JkS2m, ∗×JkS2m;Fp)
is an isomorphism because it is induced by the map

JkS
2m

Jk−1S2m
∼= S2mk id−→ S2mk ∼=

S2mk ∨ JkS2m

∗ × JkS2m

which can be seen to be an identity by decompressing the definition of the
bottom map of pairs. The diagram is a pullback square of pairs by an explicit
calculation and hence the top map is an equivalence on homology too. By
passing to the relative Thom spectra from the top map of pairs we obtain that

Eξk
Eξk−1

→ Σ2mkEξ0

is an equivalence by the homology Whitehead theorem and the Thom isomor-
phism theorem.

(iii) We show by induction on k that Eξk/E
ξ
0
θ1−→ Σ2mEξk−1 is an equivalence

for all k ∈ {1, . . . , p− 1}. The base case k = 1 was shown in part (ii).

Consider the following diagram in which both rows are cofibre sequences and
the vertical maps are induced by θ1.

Eξk−1

Eξ0

Eξk
Eξ0

Eξk
Eξk−1

Σ2mEξk−2 Σ2mEξk−1 Σ2mEξk−1

Eξk−2

θ1 θ1 θ1

To distinguish between the maps induced by θ1 we call them the leftmost, the
middle and the rightmost map. The leftmost map is an equivalence by the
induction hypothesis. The rightmost map can be composed with θk−1 to form

Eξk
Eξk−1

θ1−→ Σ2m
Eξk−1

Eξk−2

θk−1−−−→ Σ2mkEξ0
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which is θk by part (i). But θk is an equivalence by (ii). It follows that θk−1 ◦θ1

is an equivalence and so the rightmost map θ1 is an equivalence too.

Consider the commutative diagram of long exact sequences on (mod p) ho-
mology induced by the cofibre sequences above. The left and the right map are
isomorphisms and so by the 5-lemma, the middle map is an isomorphism on
too. By the homology Whitehead theorem, the middle map θ1 is an equivalence
which completes the inductive step.

Having established Lemma 3.3.4, we can now finally define b : Σ2mp−2Eξ0 →
Eξ0 as the composite

Σ2mp−2Eξ0
θ−1
p−1−−−→ Σ2m−2

Eξp−1

Eξp−2

δ1−→ Σ2m−1Eξp−2

θ−1
1−−→ Σ−1

Eξp−1

Eξ0

δ2−→ Eξ0

where the maps δ1 and δ2 arise from the cofibre sequences

· · · → Σ2m−2Eξp−2 → Σ2m−2Eξp−1 → Σ2m−2
Eξp−1

Eξp−2

δ1−→ Σ2m−1Eξp−2 → . . .

and

· · · → Σ−1Eξ0 → Σ−1Eξp−1 → Σ−1
Eξp−1

Eξ0

δ2−→ Eξ0 → · · · .

Most concisely the map b can be expressed as δ2 ◦ θ−1
1 ◦ δ1 ◦ θ−1

p−1. The useful
features of this formula are the facts that θ1 and θp−1 are equivalences and the

maps δ1 and δ2 both have some suspension of Eξp−1 as a cofibre.

Remark. We reiterate that all spaces and spectra in the discussion are p-local.
The reason for this assumption is not apparent from the proof presented here
since the p-locality is only used in the omitted argument for part (i). Looking
at this step carefully, one establishes that the statement of the Lemma 3.3.4(i)
can be slightly generalized to only requiring the invertibility of certain integers
(as opposed to localization at p). Nonetheless, some integers will always need
to be invertible which hints at the inherently local structure of the proof of the
nilpotence theorem.

For the proof that b is a natural transformation see [3, Proposition 3.15].

Lemma 3.3.5. The map b = b(Ep−1, q, ξ) : Eξ0 → Σ−|b|Eξ0 is a natural trans-
formation.

Bousfield equivalence classes of Gj and Gj+1

In the previous section, we have associated a map b : Eξ0 → Σ−|b|Eξ0 to a

general framework consisting of any fibration E0 → Ep−1
q−→ Jp−1S

2m with a
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map ξ : Ep−1 → BU . While we tried to motivate the lengthy and difficult
construction by promises that b is an essential ingredient of the proof, we never
provided any evidence for our claims. In this section, we deliver on our promises
by using b to relate the Bousfield equivalence classes of Gj and Gj+1.

Let us specialize to the fibration Bpj−1 → Bpj+1−1
q−→ Jp−1S

2pjn obtained in
the Lemma 3.3.1, but we still use m := pjn as a shorthand in many expressions.
In this instance we have Eξ0 = Gj , E

ξ
p−1 = Gj+1 and the map b : Gj → Σ−|b|Gj .

In the argument, both of these notations are used interchangeably because they
are useful for different reasons. Globally, we are only interested in Gj and Gj+1,
but their relationship arises through them being the endpoints of some filtration
with specific properties.

Our ultimate goal is to establish the Bousfield equivalence 〈Gj〉 = 〈Gj+1〉.
The following lemma provides more than one of the two inequalities.

Lemma 3.3.6. 〈Gj〉 = 〈Gj+1〉 ∨ 〈b−1Gj〉.

Proof. Let X be any spectrum such that X ∧ Gj is contractible. We need to
show that X ∧ (Gj+1 ∨ b−1Gj) = (X ∧Gj+1)∨ (X ∧ b−1Gj) is contractible and
we do this by proving that both X ∧Gj+1 and X ∧ b−1Gj are contractible.

The spectrum X ∧ b−1Gj is the homotopy colimit of the diagram

X ∧Gj
idX ∧b−−−−→ X ∧ Σ−|b|Gj

idX ∧b−−−−→ X ∧ Σ−2|b|Gj → · · ·

because the smash product commutes with arbitrary homotopy colimits. Since
X ∧Gj is contractible, all spectra X ∧ Σ−m|b|Gj are contractible and hence so
is their colimit X ∧ b−1Gj .

To show that X ∧Gj+1 is contractible, we use the spectra X ∧Eξk to inter-
polate between X ∧ Gj and X ∧ Gj+1. For any k ∈ {1, . . . , p − 1} there is a

cofibration Eξk−1 → Eξk → Eξk/E
ξ
k−1 and recall that θk : Eξk/E

ξ
k−1 → Σ2mkGj is

an equivalence by Lemma 3.3.4 (ii). Smashing by X we obtain a cofibration

X ∧ Eξk−1 → X ∧ Eξk → X ∧ Eξk/E
ξ
k−1 ' X ∧ Σ2mkGj ' ∗

in which the cofibre is contractible because it is a suspension of X ∧ Gj . By
passing to the long exact sequence of homotopy groups associated to this cofibre
sequence we find that πd(X∧Eξk) ∼= πd(X∧Eξk−1) for all k and d. Using induction

on k one can show that πd(X ∧ Eξp−1) ∼= πd(X ∧ Eξ0) for all d. But X ∧ Gj is
contractible by assumption and hence so is X ∧Gj+1.

We now prove the converse. Let X be any spectrum such that X∧Gj+1 and
X ∧ b−1Gj are both contractible. The definition of b is b = δ2 ◦ θ−1

1 ◦ δ1 ◦ θ−1
p−1

where the cofibres of δ1 and δ2 are given by

Cδ1 = Σ−1+2mGj+1 and Cδ2 = Gj+1.
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In particular, both Cδ1 and Cδ2 are suspensions of Gj+1 and hence contractible
upon smashing with X. By considering the cofibre sequence of idX ∧δ2

∗ ' X ∧ Σ−1Gj+1 → X ∧ Σ−1Gj+1

Gj

idX ∧δ2−−−−−→ X ∧Gj → X ∧Gj+1 ' ∗

it follows that idX ∧δ2 is an equivalence. By an analogous argument the map
idX ∧δ1 is an equivalence. In Lemma 3.3.4 we have shown that the maps θ1 and
θp−1 are equivalences too and hence so are idX ∧θ−1

1 and idX ∧θ−1
p−1.

Consider now the map idX ∧b : X∧Gj → X∧Σ−|b|Gj which is an equivalence
because it is a composition of four equivalences. Therefore all maps in the
diagram

X ∧Gj
idX ∧b−−−−→ X ∧ Σ−|b|Gj

idX ∧b−−−−→ · · ·
are equivalences and hence so is the map X ∧ Gj → X ∧ b−1Gj . Using the
assumption that b−1Gj is contractible we obtain that X ∧Gj is contractible as
required.

b−1Gj is contractible

The map b was used to relate the Bousfield equivalence classes 〈Gj〉 and 〈Gj+1〉
in the previous section. To show that they are equal, it remains to establish
that the telescope b−1Gj is contractible.

However, this is impossible to do directly with what we know about b so
far. In this section, we first establish a factorisation of b through Ω2S2m+1

+ ∧Gj
given by the commutative diagram

Σ2mp−2Gj Gj

S2mp−2 ∧Gj Σ∞Ω2S2m+1
+ ∧Gj

id

b

γ∧id

µ

where γ and µ are some maps yet to be defined. This allows us to utilize the
Snaith’s splitting structure of Σ∞Ω2S2m+1

+ as follows.

Let Σ∞Ω2S2m+1
+ '

∨∞
k=0Dk be the Snaith’s splitting. A careful analysis

of γ coupled with some properties of the splitting shows that γ : S2mp−2 →
Σ∞Ω2S2m+1

+ factors through Dp. It is then of interest to study the homotopy
colimit of the diagram

S
γ−→ Σ−|b|Dp

γ−→ Σ−2|b|D2p
γ−→ · · ·

which evaluates to HFp by a result due to Mahowald [12]. This shows, after
passing from our factorization diagram to homotopy colimits in the appropriate
sense, that the identity map idb−1Gj factors through HFp ∧ Gj . To conclude,

we prove that HFp ∧Gj is contractible. Hence so is b−1Gj .

We have been very hand-wavy and conceptual in our summary of the argu-
ment. Let us now sink into rigour and technicalities.
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The map µ Let us begin by constructing a map µ : Σ∞Ω2S2m+1
+ ∧Gj → Gj .

We first define the the map in TopBU and then stabilize by passing to Thom
spectra. Recall that any map f : X → Y in Top can be replaced with a fibration
pf : If → Y up to homotopy equivalence, i.e. such that X ' If . We apply this

construction to the fibration Bpj−1 → ΩSU(n + 1)
h−→ ΩS2m+1 established in

the proof of Lemma 3.3.1. For any ∗ ∈ ΩS2m+1 we obtain

Ih = {(ω, e) ∈ PΩS2m+1 × ΩSU(n+ 1) | ω(0) = h(e)}
p−1
h (∗) = {(ω, e) ∈ PΩS2m+1 × ΩSU(n+ 1) | ω(0) = h(e), ω(1) = ∗}

together with homotopy equivalences ΩSU(n + 1) ' Ih and Bpj−1 ' p−1
h (∗).

Define now

µ : P∗ΩS
2m+1 × p−1

h (∗)→ Ih

(λ, (ω, e)) 7→ (λω, e)

and note that it restricts to µ : Ω2S2m+1 × p−1
h (∗)→ p−1

h (∗). Passing to Thom
spectra now yields the map µ : Σ∞Ω2S2m+1

+ ∧Gj → Gj as required.

Remark. At this point our presentation of the proof differs from that of [3] in
more than just the order in which the material is presented; the definition of
the action µ is different. Indeed, this is only a superficial disparity. Having
previously established the fibration ΩSU(n + 1) → Ω2S2m+1 allows us to im-

mediately define the action Σ∞Ω2S2m+1
+ ∧ Gj

µ−→ Gj rather than defining the
action Σ∞ΩJp−1S

2m
+ ∧Gj → Gj and extending it later (which [3] does implicitly

through a commutative diagram of fibrations established in Lemma 3.27 of that
paper). Extending the action to Σ∞Ω2S2m+1

+ at some point is crucial because
it allows us to utilize the nice Snaith’s splitting structure of that spectrum.

The map γ We now define the map of spectra γ : S2mp−2 → Σ∞Ω2S2m+1
+ .

When we constructed b at the start of this section, we resorted to a general
framework in order to reuse the same construction at a later stage in the proof.
This time has now arrived.

Let ∗ ∈ Jp−1S
2pjn be the basepoint and let s denote the path fibration

ΩJp−1S
2pjn → P∗Jp−1S

2pjn s−→ Jp−1S
2pjn. Defining 0 : P∗Jp−1S

2pjn → BU to
be the constant zero map places us in the situation we have already encountered:
there is a map

b′′ = b(P∗Jp−1S
2pjn, s, 0) : Σ2mp−2Σ∞ΩJp−1S

2pjn
+ → Σ∞ΩJp−1S

2pjn
+

associated to this setting. Define

γ : Σ2mp−2S ↪→ Σ2mp−2Σ∞ΩJp−1S
2pjn
+

b′′−→ Σ∞ΩJp−1S
2pjn
+ ↪→ Σ∞Ω2S2pjn+1

+

where the left map is just the inclusion of the bottom cell.
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The reason for introducing the maps µ and γ is that they can be composed
to form an interesting map

Σ2mp−2Gj = S2mp−2 ∧Gj
γ∧id−−−→ Σ∞Ω2S2m+1

+ ∧Gj
µ−→ Gj .

This turns out to be another name for b.

Lemma 3.3.7. The diagram

Σ2mp−2Gj Gj

S2mp−2 ∧Gj Σ∞Ω2S2m+1
+ ∧Gj

id

b

γ∧id

µ

commutes.

Proof. Consider the map of fibrations

ΩJp−1S
2pjn × p−1

q (∗) P∗Jp−1S
2pjn × p−1

q (∗) Jp−1S
2pjn

p−1
q (∗) Iq ΩS2pjn+1

µ

sπ1

µ id

pq

where we recall from the discussion preceding this proof that the bottom row is
a fibration replacement of q (in particular Bpj+1−1 ' Iq and Bpj−1 ' p−1

q (∗))
and the top row is obtained from the path fibration.

The original map b = b(Bpj+1−1, q, ξ) : Σ|b|Gj → Gj is the map associated

to the bottom fibration. The map b′ = b(P∗Jp−1S
2pjn × Bpj−1, sπ1, 0) is the

map associated to the top fibration. By passing to Thom spectra and using the
naturality of the construction b(Ep−1, q, ξ) we obtain a commutative diagram

Σ|b|Σ∞ΩJp−1S
2pjn
+ ∧Gj Σ∞ΩJp−1S

2pjn
+ ∧Gj

Σ|b|Gj Gj .

b′

µ µ

b

Let us now rewrite b′ in a nicer form. We have

b(P∗Jp−1S
2pjn ×Bpj−1, s ◦ π1, 0) = b(P∗Jp−1S

2pjn, s, 0) ∧ idGj

by Lemma 3.20 in [3], which is not hard to prove. By definition b′′ = b(P∗ΩS
2pjn+1, s, 0)

so the equality can be expressed succinctly as b′ = b′′ ∧ idGj . The commutative
diagram from above yields the diagram
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Σ|b|Gj Σ|b|Σ∞Ω2S2pjn+1
+ ∧Gj Σ∞Ω2S2pjn+1

+ ∧Gj

Σ|b|Gj Gj

b′′∧id

µ µ

b

in which the top row is the map γ ∧ id. The bottom composition is the map b.
Therefore b = µ ◦ (γ ∧ id) as required.

As we have remarked earlier, the reason for immense usefulness of this factor-
ization of b lies in the very nice splitting structure of the spectrum Σ∞Ω2S2m+1

+ .
This result is known under the name of Snaith’s splitting.

Theorem 3.3.8 (Snaith’s splitting of S2m−1
+ ). There is a decomposition

Σ∞Ω2S2m+1
+ '

∞∨
k=0

Dk

where the Dk are finite spectra.

This splitting has several convenient properties we will use without proof in
the discussion below. A reader is referred to [11] for a comprehensive treatment
of the spaces of the form Ω2Sk and their suspension spectra.

We are interested to see how γ : S2mp−2 → Σ∞Ω2S2m+1
+ interacts with this

splitting structure. It turns out that up to HFp-equivalence this interaction is
as nice as possible.

Lemma 3.3.9. The map γ : S2mp−2 → Σ∞Ω2S2m+1
+ factors through Dp.

This will allow us to rewrite b in a much more powerful form and establish
the contractibility of b−1Gj .

Proof. We first investigate the relationship between the (mod p) homologies
of Σ∞Ω2S2m+1

+ and those of the spectra Dk on the other side of the Snaith’s

splitting. It can be shown that the (mod p) homology of Ω2S2m+1
+ is

H∗(Ω
2S2m+1

+ ;Fp) ∼= Λ [x2m−1, x2mp−1, . . . ]⊗ Fp
[
y2mp−2, y2mp2−2, . . .

]
where the subscripts i indicate the homological degree of the classes xi and yi
and Λ denotes the exterior algebra on the given generators. Σ∞Ω2S2m+1

+ is a
suspension spectrum so it has the same homology.

The vector space H∗(Ω
2S2m+1

+ ;Fp) is naturally graded in which the grading
is given by the homological degree. To describe the homology of the spectra Dk

as a subspace, we introduce another grading by giving weight

wt(x2mpi−1) = wt(y2mpi−2) = pi
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to the generators and extending using wt(ab) = wt(a) + wt(b). With this nota-
tion H∗(Dk;Fp) ⊂ H∗(Ω

2S2m+1
+ ;Fp) is the vector space spanned by all mono-

mials of weight k.

In particular, observe that wt(x2m−1) = 1 and every other generator of
H∗(Ω

2S2m+1
+ ;Fp) has weight divisible by p. Since x2m−1 is an element of the

exterior algebra we have x2
2m−1 = 0. Hence all monomials in H∗(Ω

2S2m+1
+ ;Fp)

have weight 0 or 1 (mod p) and H∗(Dk;Fp) = 0 unless k ≡ 0 or 1 (mod p).

To see that γ factors through Dp consider the map

Σ∞Ω2S2m+1
+

'−→
∞∨
k=0

Dk
ε+∨g−−−→ D0 ∨D1 ∨Dp = S2m−1

+ ∨Dp

using the fact that D0 = S0 and D1 = S2m−1. By homology considerations
above, this is a HFp-equivalence in dimensions up to (2m − 1) + (2mp − 2) =
2mp+ 2m− 3. It is another known result about the Snaith’s splitting that the
map ε+ is obtained from the evaluation map of spaces

S1 ∧ S1 ∧ Ω2S2m+1 → S2m+1

(x, y, f) 7→ f(y)(x)

after passing to hSp. Precomposing with γ we obtain

S2mp−2 ↪→ Σ2mp−2Σ∞Ω2S2m+1
+

b′′−→ Σ∞Ω2S2m+1
+

ε+∨g−−−→ S2m−1
+ ∨Dp.

Now it turns out that ε+ ◦ b′′ is null-homotopic. This can be seen by expanding
the definition of b′′ as the composition δ2 ◦ θ−1

1 ◦ δ1 ◦ θ−1
p−1 where these maps

are associated to the triple (P∗ΩS
2m+1, s, 0) and studying θ1. See [3, Corollary

3.26] for details.
Since ε+ ◦ b′′ is null-homotopic, it follows that γ is homotopic to a map into

Dp as required.

Everything we do in the rest of the proof only concerns the homotopy class
of γ, so we without loss of generality assume that γ : S2mp−2 → Dp lands in
Dp.

Suspensions of the map γ : S2mp−2 → Dp can be used to create a telescope

S
γ−→ Σ−|b|Dp

γ−→ Σ−2|b|D2p
γ−→ · · · .

Its homotopy colimit is lim−→Σ−N |b|DNp = HFp the (mod p) Eilenberg-Mac Lane
spectrum due to Mahowald [12].

Recall that the map b factors as S2mp−2 ∧Gj
γ∧id−−−→ Ω2S2m+1

+ ∧Gj
µ−→ Gj by

Lemma 3.3.7. We have just shown that γ lands in Dp and therefore b can be
rewritten as

S2mp−2 ∧Gj
γ∧id−−−→ Dp ∧Gj ↪→ Σ∞Ω2S2m+1

+ ∧Gj
µ−→ Gj .
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It follows that for N ∈ N we can write bN as

SN(2mp−2) ∧Gj
γ∧N∧id−−−−−→ D∧Np ∧Gj ↪→ (Σ∞Ω2S2m+1

+ )∧N ∧Gj
µ∧N−−−→ Gj .

We now use another property of the Snaith’s splitting. The loop space Ω2S2m+1

is an H-space. Passing to hSp the H-space structure induces a multiplication
map Σ∞Ω2S2m+1

+ ∧Σ∞Ω2S2m+1
+ → Σ∞Ω2S2m+1

+ compatible with the Snaith’s
splitting. In particular, the multiplication induces the maps Dip∧Djp → D(i+j)p

such that the diagrams

Si|b| ∧ Sj|b| S(i+j)|b|

Dip ∧Djp D(i+j)p

γi∧γj

id

γi+j

commute. Therefore bN simplifies to

SN(2mp−2) ∧Gj
γN∧id−−−−→ DNp ∧Gj ↪→ Σ∞Ω2S2m+1

+ ∧Gj
µ−→ Gj .

This can be restated by saying that the diagram

Gj Gj

Σ−|b|Dp ∧Gj Σ−|b|Gj

Σ−2|b|D2p ∧Gj Σ−2|b|Gj

...
...

id

γ∧id b

µ

γ∧id b

µ

γ∧id b

commmutes. By passing to the homotopy colimits of both columns we see that
the map Gj → b−1Gj factors through lim−→Σ−N |b|DNp ∧Gj = HFp ∧Gj . Hence
we can consider an enlarged commutative diagram

Gj Gj ∧HFp b−1Gj

Σ−|b|Gj Σ−|b|Gj ∧HFp b−1Gj

...
...

...

b b∧id id

b b∧id id

where the vertical maps are induced by b. This allows us to pass to the homo-
topy colimits of the three columns. As always, using that the smash procuct
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commutes with colimits, we obtain a map

b−1Gj → b−1Gj ∧HFp → b−1Gj .

This is the identity map on b−1Gj which can be seen by considering only the
first and last columns of the commutative diagram.

To say something about b−1Gj ∧HFp in the middle, let us study the map
that b induced on (mod p) homology. Recall that b = δ2 ◦ θ−1

1 ◦ δ1 ◦ θ
−1
p−1 where

θ1 and θp−1 are equivalences. The map δ2 arises from the cofibre sequence

· · · → Σ−1Gj → Σ−1Gj+1 → Σ−1Gj+1/Gj
δ2−→ Gj → · · · .

Recall from 2.5.10 that H∗(Bpj−1;Fp) is the Fp [x1, . . . , xn−1]-submodule of

Fp [x1, . . . , xn] generated by 1, xn, . . . , x
pj−1
n , the inclusion Bpj−1 ↪→ Bpj+1−1

is a monomorphism on (mod p) homology. By exactness and the Thom isomor-
phism theorem δ2 is the zero map on (mod p) homology. Thus HFp∗(b) = 0 too
and b−1Gj ∧HFp is contractible. This gives the factorization

b−1Gj → ∗ → b−1Gj

of the identity map on b−1Gj . It follows that b−1Gj is contractible, which is
exactly what we wanted to prove.

3.3.4 Conclusion

In Step I and Step II we have proven two major propositions.

Proposition 3.3.10. Let X(n+ 1)∗(α) be nilpotent. Then Gj ∧ α−1R is con-
tractible for sufficiently large j.

Proposition 3.3.11. 〈Gj〉 = 〈Gj+1〉 for any j.

The proof of the weak ring spectrum form of the nilpotence theorem now
follows relatively easily. Consider the diagram

Sd MU ∧ Sd

R MU ∧R

η

α
h(α)

idMU ∧α

η∧idR

defining the MU Hurewicz’s homomorphism h. Since α ∈ kerh, we have that
h(α) is null-homotopic and so MU∗(α) = 0. Since MU is the homotopy colimit
MU = lim−→X(n) of the spectra X(n) by Lemma 2.5.8 we must have X(n +
1)∗(α) = 0 for sufficiently large n. By Proposition 3.3.10 it follows that Gj ∧
α−1R is contractible for sufficiently large j. Using the Bousfield equivalence
in the Proposition 3.3.11 inductively, we can descend from Gj to G0 and thus
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show that G0 ∧ α−1R = X(n) ∧ α−1R is contractible as well. Smash products
commute with homotopy colimits so X(n) ∧ α−1R is the homotopy colimit of
the diagram

X(n) ∧R
idX(n) ∧α−−−−−−→ X(n) ∧ Σ−dR

idX(n) ∧α−−−−−−→ · · · .

We take homotopy groups. Because π∗(X(n) ∧ α−1R) = 0 by contractibility, it
follows that X(n)∗(α) is nilpotent.

We can iterate the above procedure n times to obtain that X(1)∗(α) is
nilpotent. But X(1) = S so X(1)∗(α) = α. Therefore α is nilpotent. �

3.4 Remarks about the proof

The heart of the proof lies in establishing the Bousfield equivalence of classes
〈Gj〉 and 〈Gj+1〉. This represents one of the ω2 tiny steps between MU and S.

One could try to simplify the argument by only making ω bigger steps of the
form X(n+ 1) X(n) or even a single jump MU  S. This fails. Descending
to the level of Gj is necessary because something remarkable happens in this
setting: 〈Gj〉 = 〈Gj+1〉. The fact that this fails to hold on the level of X(n)
or higher suggests that there is little hope of a general argument; any inductive
proof of the nilpotence theorem must utilize some specific properties possessed
by the Gj .

The tool we use to take advantage of these properties is the map b – it allows
us to compare the Bousfield equivalence classes of Gj and Gj+1. Its definition
spans several pages of this essay and may seem convoluted at first, so we try to
explain how this map arises naturally. By considering the fibration

Bpj−1 → Bpj+1−1 → Jp−1S
2pjn+1

from Lemma 3.3.1 and passing to Thom spectra, one obtains a similar map
Gj → Gj+1 serving a similar purpose. If one chooses this route, there are other
cofibre sequences that need to be established, but the proof proceeds in a similar
spirit [4, see Section 9.5]. The advantage of the approach taken here and in [3]
is that all of this information is conveniently compressed in the definition of b.

The climax of the proof is establishing further properties possessed by b. If I
tried to distil the insight I have gained by studying the proof in depth, I would
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say the nilpotence theorem is true because of the existence of the commutative
diagram

S2mp−2 ∧Gj Σ∞Ω2S2m+1
+ ∧Gj Gj

Dp ∧Gj

γ∧id µ

where the long composition is the map b. This diagram unites the following
information about the map b:

− Lemma 3.3.7, which provides the factorization in the upper row. This
factorization is heavily based on the results from Lemma 3.3.1.

− Lemma 3.3.9 following the Snaith’s theorem about the splitting structure
of Σ∞Ω2S2m+1

+ , which guarantees that γ factors through Dp.

Once this diagram is established, the contractibility of b−1Gj and hence the
proof of the nilpotence theorem follow easily. We also remark that a diagram
resembling this one appears in the original proof of the Nishida’s theorem and,
in fact, the proof presented in this essay was motivated by Nishida’s work. We
expand on this remark in Chapter 4.

Step II is the only part of the proof of the nilpotence theorem, for which no
know alternative proof exists as of 2021.

3.4.1 The role of MU

Intuitively, the nilpotence theorem states that MU detects nilpotence. The
spectra X(n) and Fk exhibited in the proof detect nilpotence just as well as the
MU does, but this is far from being true for general ring spectra. In this section
we inspect the proof and give some sufficient properties for a ring spectrum T
to detect nilpotence.

It is clear that if R detects nilpotence and 〈R〉 = 〈T 〉, then T detects nilpo-
tence too. More generally, we have the following result which has been called
the axiomatic nilpotence theorem [6].

Theorem 3.4.1. Let R→ T be a morphism of ring spectra such that R detects
nilpotence. If T is a filtered colimit of spectra Gj such that

− the Adams spectral sequence for Gj ∧ R based on T converges and has
vanishing lines of arbitrarily small slopes on the E∞-page and

− 〈Gj〉 = 〈R〉 for all j,

then T detects nilpotence.

The proof presented in this essay verifies these criteria for the map of spectra
X(n)→ X(n+1). Step I corresponds to the first point and Step II corresponds
to the second point of this theorem.
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The sequel [13] of the paper [3] gives a refined characterisation of the spectra
detecting nilpotence in terms of Morava’s K-theories.

3.5 Smash product form

In this section we deduce the smash product form of the nilpotence theorem
from the weak version of the ring spectrum form.

Theorem 3.5.1 (Nilpotence theorem, smash product form). Let F be a finite
spectrum and f : F → X a map of spectra. If idMU ∧f is null-homotopic, then
f is smash nilpotent.

Proof. By Spanier-Whitehead duality we can reduce to the case F = S. Indeed,
let DF be the Spanier-Whitehead dual of F and let f̂ : S → X ∧ DF be the
adjoint of f . By the properties of Spanier-Whitehead duals we have that

f is smash nilpotent iff f̂ is smash nilpotent

and

idMU ∧f is null-homotopic iff idMU ∧f̂ is null-homotopic.

It is therefore equivalent to establish the theorem for f̂ and so we can without
loss of generality assume that F = S.

Let f : S → X be a map of spectra such that idMU ∧f is null-homotopic.
The diagram

S X

MU MU ∧X

f

η η∧idX

idMU ∧f

commutes and any spectrum, in particular X, is a homotopy direct limit of its

finite subspectra [4, see A.5.8]. So f factors as S
f−→ Xα → X through some

finite subspectrum Xα of X and similarly the homotopy between idMU ∧f and
the constant map factors through MU ∧Xβ for some finite subspectrum Xβ of
X. Since the finite subspectra form a direct system we have Xα = Xβ without
loss of generality.

The spectrum Xα is finite so it is (−d)-connected for some d ∈ Z. Then
Y = ΣdXα is 0-connected and let

R =

∞∨
j=0

Y ∧j .

This is a connective ring spectrum of finite type. Under the natural inclusion

Y ↪→ R we can consider Sd
f−→ Y ↪→ R to be an element of πd(R). Because this

element vanishes, it follows that f is smash nilpotent as required.
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3.6 Ring spectrum form

In this short section we deduce the strong version of the ring spectrum form
from the smash product form. The adjective strong refers to the fact that there
are no underlying assumptions on the ring spectrum R. In particular, it is not
necessarily connective or of finite type while both of these assumptions were
required in 3.2.1. On the other hand, the distinction between the weak and the
strong version is only pedagogical. They are logically equivalent as is witnessed
by the circle of implications

− Weak ring spectrum form =⇒ Smash product form (by 3.5.1)

− Smash product form =⇒ Strong ring spectrum form (by 3.6.1)

− Strong ring spectrum form =⇒ Weak ring spectrum form (trivial)

proven in this essay. With this in mind, we usually only refer to the ring
spectrum form and mean the following theorem.

Theorem 3.6.1 (Nilpotence theorem, ring spectrum form). Let R be a ring
spectrum and let

h : π∗(R)→MU∗(R)

be the Hurewicz homomorphism. Then every element of kerh is nilpotent.

Proof. Let α : Sd → R be an element of kerh. Therefore idMU ∧α : MU →
MU ∧R is null-homotopic and hence α is smash nilpotent by the smash product
form. So α is nilpotent as required.

For completeness, we pinpoint the places in the proof of the weak version
where the additional assumptions of connectivity and finite type were used.

− The connectivity of R was used in Proposition 3.3.2 to establish vanishing
lines in the Adams spectral sequence for the π∗(Gj ∧R).

− The finite type of R was used in Lemma 2.6.4 about the convergence of
the Adams spectral sequence.

3.7 Self-map form

In this section we deduce the self-map form of the nilpotence theorem from the
ring spectrum form.

Theorem 3.7.1 (Nilpotence theorem, self-map form). Let X be a finite spec-
trum and let f : ΣdX → X be a self-map for some d. If MU∗(f) = 0 then f is
nilpotent.

Proof. Let f̂ : Sd → DX ∧X be the adjoint of f under the Spanier-Whitehead
duality. Since

f is nilpotent iff f̂ is nilpotent
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it is equivalent to show that f̂ is nilpotent. We establish this by applying the
ring spectrum form of the nilpotence theorem with R = DX ∧ X. There are
two conditions that need to be checked.

− DX ∧X is a ring spectrum:

The unit map η : S → DX∧X is the adjoint of idX and the multiplication

map is given bym : DX∧X∧DX∧X idDX ∧Dη∧idX−−−−−−−−−−→ DX∧S∧X ' DX∧X
where Dη is the Spanier-Whitehead dual of η. It can easily be verified
that η and m make DX ∧X into a ring spectrum by chasing the required
diagrams.

− h(f̂) = 0 where h is the Hurewicz homomorphism for MU :

To see this, note that MU∗(f) = 0 so MU ∧ f−1X is contractible. Since

X is finite, the composition ΣNdX
fN−−→ X → MU ∧X is null-homotopic

for some N . Then h(f̂N ) : SNd
f−→ DX ∧ X η∧id−−−→ MU ∧ DX ∧ X is

null-homotopic.

We have verified the conditions, so we may apply the ring spectrum form of

the nilpotence theorem. It now follows that f̂N is nilpotent and hence so is its
adjoint fN . Therefore f is nilpotent.

Remark. We have shown that the ring spectrum and the smash product forms
of the nilpotence theorem are equivalent. The self-map form as stated in the
Theorem 3.7.1 is genuinely a weaker statement.



4. APPLICATIONS

In this chapter we prove Nishida’s theorem and address some related questions.

4.1 Nishida’s theorem

Nishida’s theorem is an immediate corollary of the nilpotence theorem for the
sphere spectrum S. It was proven in 1973 by Goro Nishida [14] and served as
motivation for conjecturing and evidence for the truth of the nilpotence theorem.

Theorem 4.1.1 (Nishida’s theorem). Every element of positive degree of πS∗ is
nilpotent.

Proof. Let d ∈ N. By Serre’s finiteness theorem about homotopy groups of
spheres all πSd are finite and hence all elements of πSd are torsion. On the
other hand Novikov [15] showed that π∗(MU) ∼= Z [x1, x2, . . .] with |xi| = 2i is
torsion-free. Because h : πS∗ → π∗(MU) is a ring homomorphism all positive
degree elements of πS∗ must vanish. By the ring spectrum form of the nilpotence
theorem every element of kerh is nilpotent as required.

It may be instructive to think about how our proof of the ring spectrum
form of the nilpotence theorem specializes to the case R = S. It transpires
that, despite this being a very special case of the theorem, the proof does not
simplify substantially; the complex part of the proof lies in establishing that
〈Gj〉 = 〈Gj+1〉, a claim which makes no reference to R.

Heuristically, one can explain the situation as follows. The proof does not
simplify, because it proceeds by constructing a very powerful and robust ma-
chinery (the spectra Gj together with a map b) designed to solve a specific hard
problem. If one does not develop the theory in its entirety, it just does not
work. A colourful analogy comes to mind – even an otherwise impeccable Fer-
rari without a single important part, for example a clutch pedal, is unable to
move. However, if one is only interested in driving around Cambridge, a bicycle
may be a more suitable mode of transportation than a fully functioning Ferrari
anyway.

This brings us to the obvious question. Can we adapt the existing proof to
produce a simpler one that cannot necessarily prove the nilpotence theorem, but
is still powerful enough to do the case R = S? Yes, this can be done and it is very
much in the spirit of Nishida’s original proof. Instead of the contractibility of
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the telescope b−1Gj we can show the contractibility of α−1S which immediately
implies that α is nilpotent.

In the proof of the nilpotence theorem we use the factorization of the map

bN : ΣN |b|Gj → DNp ∧Gj → Gj

through the spaces DNp with the homotopy colimit lim−→DNp = HFp to establish

that the identity map on the telescopes passes through HFp ∧ b−1Gj ' ∗. This
is completely analogous to what Nishida did in his proof. For certain elements
α ∈ πSd he utilized factorizations of the form

αN : SNd → DNp → S

previously established by Toda [16] to show that α is nilpotent. The nilpotence
theorem is thus a vast generalization of both the statement and the proof of
Nishida’s theorem.

Remark. To be completely historically accurate, we have to point out that
Nishida’s paper [14] contains two different approaches towards the proof. One of
the approaches establishes Nishida’s theorem and the other only produces some
partial results (for example, the elements of πS∗ of prime order are nilpotent).
The paper [3] generalizes the latter approach.
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